Средец 50 – нова лазерна технологична система!

Средец 50 – нова лазерна технологична система!

Средец 50 – нова лазерна технологична система!

В предишната публикация Ви разказахме за българската система за лазерно рязане Искър 500. А сега ще обърнем внимание на една малко известна апаратура за прецизно гравиране и надписване на повърхнини от различни материали. Процесът се извършва чрез същата технология – лазерното гравиране.

Тази апаратура е разработена в България през втората половина на 80-те години в същия този Завод за лазерно технологично оборудване Иглика и се нарича Средец 50:

СРЕДЕЦ 50 ВИ ПРЕДОСТАВЯ БОГАТИ ТЕХНОЛОГИЧНИ ВЪЗМОЖНОСТИ, НЕКОЛКОКРАТНО ПОВИШАВА ПРОИЗВО­ДИТЕЛНОСТТА НА ТРУДА И РЕШАВА ПРОБЛЕМИ, КОИТО НЕ МОГАТ ДА БЪДАТ РЕШЕНИ С ПОЗНАТОТО ВИ ДОСЕГА ТЕХНОЛОГИЧНО ОБОРУДВАНЕ.

Средец 50 извършва точно гравиране на инструментални нониуси (шублери), маркиране и надписване на знаци, цифри и букви върху инструменти, скали, лагери, клавиши и други.

Системата работи с 50 вата непрекъснат ИАГ: Nd лазер и акустооптичен модулатор.

Освен за гравиране, маркиране и надписване, с ЛТС Средец 50 могат да се изрязват детайли със сложна кинфигурация от листови метали с дебелина под 0,5 мм.

Шефмонтажът, обучението на кадрите, слегаранционното сервизно обслужване и допълнителните резервни части за 2- до 5-годишен период на експлоатация са по желание на клиента и са предмет на отделни договори.

Завод Иглика Zavod Iglika

 Технически характеристики:

  • Широчина на разграфяваните щрихи и маркировка – от 0,08 до 0,2 мм
  • Разлика в широчината на щрихите върху една скала – до 0,03 мм
  • Дълбочина на щрихите – до 0,4 мм
  • Повтаряемост на позициониране – до 0,005 мм
  • Скорост на позициониране –  8 м/мин.
  • Скорост на работния ход – по 4 м/мин.
  • Максимален ход на координатната маса по ”Х” – 400 мм
  • Максимален ход на координатната маса по ”У” – 200 мм
  • Приспособление за захващане и базиране върху координатната маса в зависимост от конкретния обработван детайл (шублер, лагер и т.н.)
  • Режим на работа:

ръчен — за настройка на системата;

автоматичен – по програма зададена от системата за управление с ръчно пускане и автоматично спиране в края на работния цикъл

  • Възможност за преместване на обектива спрямо обработваната повърхнина – ± 10 мм
  • Време за готовност на ЛТС Средец 50 за работа – 10 мин

Когато ще искате да свържете Средец 50 с електронноизчислителната машина, която ще го управлява, трябва да имате предвид и да направите следното:

  • Предназначена е за система за управление ЗИТ 500 М
  • Инкрементално програмируемо преместване по оси ”Х” и ”У” – 0,001 мм
  • Работа на ЛТС ’Средец 50 от перфолента или от памет
  • Обстойно запознаване с паспорта на изделието, къде то са описани някои особености на ЛТС.
Лазерна технологична система lazrena tehnologichna sistema

Други технически характеристики:

  • Максимална консумирана мощност на ЛТС  — до 10 kVA
  • Захранващо напрежение – 3 х 380 V; 50 Hz
  • Захранване със сгъстен въздух — от 3 до 5 МРа
  • Разход на вода за охлаждане    — 8 l/min
  • Температура на водата за охлаждане  -14 + 3° С
  • Габаритни размери

на основния корпус — 2200 х 1320 х 850 мм

на блока за управление — 900 х 350 х 1200 мм

  • Маса

на основния корпус — 900 кг

на блока за управление – 100 кг

Един материал на Сандъците Sandacite

Как работи първият български алкохолен дрегер

Първият български алкохолен дрегер пристигна в Sandacite.BG!

Първият български алкохолен дрегер

Не знаем дали Ви се вярва, но преди 43 години в България е произвеждано и такова устройство. РА`73 е рожба на Завода за ядрени уреди (!) Плевен и смятаме, че заслужава да бъде представен… по възможност точно днес. :)

И така, да започваме!

Регистраторът на алкохол измерва количеството алкохол в кръвта на шофьорите посредством измерване на количеството алкохол в издишвания въздух.

Нека предположим, че желаем да работим с него още тук и сега. В такъв случай дрегерът се изважда от опаковъчната крутия и след това се проверява:

  • комплектността на прибора
  • външен вид
  • наличие на пломба на прибора
Алкохолен дрегер Alkoholen dreger

Когато трябва да Ви проверят дали сте пили, преди да шофирате, катаджията първо включва уреда към източник на напрежение 12 волта (напр. от автомобила Ви). След това задейства датчика (специална стрелка указва дали той е готов за работа) и проверява дали сондата, в която ще вдъхвате въздух чрез мундщук, е затворена. Следват още малко приготовления и в сондата се втиква пластмасовият мундщук, а Вие вземате въздух от дробовете си и юнашки вдъхвате в мундщука. Когато издишате докрай, ще светне сигнална лампа – това е доказателство, че действително сте вдъхнали, а не сте шмекерували. В някои случаи обаче е необходимо по-рязко издишане на въздуха от дробовете, за да се задейства сигналната лампа. Освен това там има едно червено лостче, което трябва да бъде в положение ,,З“, защото в противен случай въздухът преминава свободно и не задейства клапата. Друго важно е, че червената светлина не означава наличие на алкохол. Ако до 2 мин. след вдъхването измерителната стрелка не се отклони към червения сектор, а остане в зеления, то не сте употребили алкохол и можете да продължите спокойно пътя си. През тези 2 ,,минути на истината“ не трябва да се извършват никакви манипулации по дрегера, за да отчита правилно.

Това е накратко.

Ако искате, по-надолу можете да проследите как е описана употребата на дрегера в техническото му описание…

Приборът /в калъф или бал калъф/ са свързва към захран­ващо напрежение 12 волта. Ако се използва за захранване бордовата мре­жа на автомобил – лек тип, приборът са свързва чрез захранващия си кабел директно е гнездото за ел. запалка, като съединителите тип „Банан-щекер“ са поставени в държача /4/. Ако автомобилът не при­тежава такава или приборът ще се включва към акумулатор или друг токоизточник, захранването става с помощта на двата проводника от захранващ кабел, завършващи със съединители тип „Банан щекер“. Към тях се поставят съединителите тип „Крокодил“. В този случай към предната част на кабел захранващ са поставя капачка /1/

За да разберете какво се има предвид под номерираните части, моля, погледнете чертежа малко по-надолу. Какво се случва по-нататък в сюжета, можете да разберете оттук:

РА 73 RA 73
РА 73 RA 73

Eто и чертеж на самия дрегер:

Дрегер схема Dreger shema

Както и неговата електрическа схема:

Схема на дрегер Shema na dreger

А тук виждаме и производствената табела:

Алкохолен дрегер Alkoholen dreger

За съжаление ръководството на дрегера РА`73 не е отпечатано с най-високото възможно качество на полиграфията, дори можем да кажем, че не се и доближава до средното. Затова си позволихме малко повече да Ви разходим из скенирани страници, а илюстрацията отдолу е оригиналната корица:

Дрегер РА 73 Dreger RA 73

Една статия Sandacite.BG, написана с любов към българскота техника!

Хронос`72 от 1972 г. – първият български електронен часовник?

В Sandacite.BG намерихме инфо за може би първия български електронен часовник Хронос`72!

Български електронен часовник Хронос`72

Продължаваме екскурзията из дебрите на малко познатата българска техника с разходка до Силистра! :)

Дали устройството на снимката не е първият български електронен часовник? През 1972 г. конструкторски колектив от Централния институт по елементи и Комбинат Оргтехника Силистра създава настолния електронен часовник Хронос`72. Неговото производство започва през следващата 1973 г. (изт.: сп. Електропромишленост и приборостроене). Това не е само обикновен настолен електронен часовник. Това е и още нещо! За него ще Ви разкажем днес.

Хронос`72 е реализиран на старт-стопен принцип с възможност за ръчно или автоматично управление. Хората, които имат заслугата той да се появи на бял свят, са инж. Чавдар Богоев, Димитър Полов и Петър Димитров. Трудно е да се изброят всичките приложения но устройството.

„Хронос“ изпълнява ролята на часовник-майка, като захранва няколко периферни устройства, разработени или в разработка пак от същите хора. Той разполага с:

  1. Светлинен индикационен панел. Предвидената възножност за управле­ние на такова табло позволява електронното часовниково устройство да бъде из­ползвано при всички случаи, когато е необходимо точно отчитане на времето, ипи на интервали от време. С други думи: при всички видове гари, театри, спортни състезания и други. Тук трябва да се прибави, че „Хронос“ притежава способност да работи на фото-старт и фото-финиш.
  2. Устройство с възможност за помнене на осем резултата. Така се разширява приложението на Хроноса за определяне времетрае­нето на множество технологични процеси, както и за задаване на определени интер­вали от време лак в производствения цикъл.

Интересно и важно по отношение на документирането е периферното устрой­ство с

  1. Възможност за печатане на информацията.

Накрая трябва да отбележим и

  1. Периферното командно устройство, при което по предварително набрана информация се включват или изключват дадени обекти. Образецът от 1972 г. има въз­можност да се предава до осем команди автоматично. Няколко периферни устрой­ства с такъв брой команди дават наистина големи възможности. Тук приложе­нието обхваща най-различни сектори както от стопанската дейност — производ­ствена, търговска, научна и т. н., така и от обществената дейност.

Хронос`72 е изграден на базата на кварцов генератор и представлява модерно за времето си устройство, изпълнено изцяло на универсални МОС интегрални схеми. Тези схеми са изключително българска разработка и производство. Нещо повече: за устрой­ство могат да се използват и схеми, от които не се изисква такова голямо бързо­действие както, например, от схемите, предназначени за производство на електронни калкулатори.

Нека прибавим към това и ниската себестойност на електронното часовниково устройство Хронос`72. Дори през 1972 г., когато производството още не е започнало, по предварителни, закръглени изчисления тя възлиза на около триста тогавашни лева. А това е значително  по-евтино от неелектронния вносен „Лонжин“! Като се вземе предвид и броят на устройствата, които по това време са в плана за бъдещо годишно производство, вече е излишно да се прави задълбочен анализ на ефективността на едно такова производство.

Съществувала е перспектива схемите да се рационализират и да се намалят по брой. Заедно с това се намаляват значително и размерите. Производството на така специализираните, вече за Хронос схеми, е трябвало да се поеме също от българските заводи.

При разработката на някой следващ вариант на устройството се предвижда съв­местна работа (пак по линията на ТНТМ) със Завода за електронно-преобразователни елементи София. Задачата на инженерите от ЗЕПЕ по това време е да се заемат с „операцията“ да поставят българ­ско сърце на устройството — български кварцов генератор.

ТОЧНОСТТА — всъщност тя трябваше да заеме първо място в тази пабликация — е достатъчно висока: максималната грешка е от порядъка на 5.10-5. Изразено по друг начин, това означава, че вероятността за грешка е максимум една секунда за повече от месец. Приятният според нас външен вид също допринася да се повиши общата оценка на Хроноса. Съчетанието на мекия цвят на фурнира с блестящите метални части, добре решената (макар и неголяма) ергономична задача с копче­тата за управление и индикационното табло… въобще цялото художествено оформление говори много за отношението на тогавашните създатели към промишлената естетика.

А знаете ли, че българин изобретява първия електронен часовник в света въобще?

==>

Историята на електронния часовник

Български рентгенов апарат Рд100 от началото на 1950-те г.!

Българският рентгенов апарат Рд100 e в Sandacite.BG

Български рентгенов апарат Рд100

Днес пак влизаме в темата електромедицина, и то с нещо много интересно!

На старата снимка отгоре виждате Рд100. Той представлява стационарен диагностичен рентгенов апарат (Д в названието = Диагностичен). Най-вероятно това е първият български рентген. Конструиран е за масова рентгенова диагностична работа с двуфокусна рентгенова тръба 2/10 kW. Произвеждан е в Слаботоковия завод в София през първата половина и средата на 50-те години.

Като електротехника Рд100 има полувълнов, безвентилен високоволтов генератор с малко въ­трешно активно съпротивление, поради което рентгенографският му ефект е добър и при стабилни, и на по-слаби електроснабдителни мрежи. Комплектува се с маслен защитен кожух на рентгеновата тръба, който е снабден с вентилатор за охлаждане при напрегнат работен режим.

Рентгеновият апарат РД100 има мощност 100 мА при 100 kVмакс, съотв. 150 мА при 60 kVмакс. Ето защо на него се използва напълно мощността на 10 киловатовата рентгенова тръба. Високоволтовият трансфор­матор и двата отоплителни трансформатора са поставени заедно в общ маслен котел (фиг. 2—23). Отоплителните трансформатори са конструирани с отворен магнитопровод с увеличено магнитно разсей­ване и работят на режим, при който колебанията на мрежовото напрежение се отразяват по-слабо върху вторичното (отоплителното) напрежение.

Токовите кръгове за прегледи и снимки са напълно разделе­ни един от друг и се регулират самостоятелно. При рентгеноскопията се регулира плавно както анодният ток, така и високото на­прежение. За напрежението това се постига с плъзгач-четка по ав- тотрансформаторната намотка в граници от 40 до 100 kVмакс. За да се получи такъв обхват на ре­гулиране само с една четка, без да се удължава много автотрансформаторната намотка, максимал­ното първично напрежение за ви­соковолтовия трансформатор при рентгеноскопия е предвидено 170 в, а при снимки (с оглед да се намали активното съпротивле­ние) — 380 V.

При режим на снимки високото напрежение на рентгеновия апарат Рд100 се регулира на 25 стъпала по 2,5 kV на всяко в съ­щия интервал от 40 до 100 kVмакс.

Схема на рентген Shema na rentgen

Силата на анодния ток има 7 сте­пени за големия и 4 за малкия фо­кус, които се избират и включват автоматично, понеже регулирането на параметрите на рентгеновата тръба — квмакс, мА и сек — е свър­зано (фиг. 2—36). Поради това в апарата във всички случаи съще­ствува режим на еднакво използуване на капацитета на рентгеновата тръба според работната й характеристика. Същевременно тръбата се предпазва от претоварване, защото възможността за погрешна манипулация е изключена. Превключването на малкия фокус за снимки става автоматично, когато избирачът за експонацията се прехвърли към данни за този фокус. Релето за време е кондензаторно (фиг.2—41,6) с обхват от 0,1 до 10 сек.

Поради автоматиката на командната маса няма превключвател за фокусите, нито регулатор за силата на анодния ток при снимки.

Тъй като регулаторите за високото напрежение на апарата Рд100 имат механични по­казатели, не е предвиден киловолтметър (фиг. 2—32).

Уредбата има ключ за далечно командване от работното място (на екранната рамка), който позволява да се извършва включването за рентгеноскопия или снимки, както и непосредствено да се преми­нава от едното към другото. Конструктивно този ключ е свързан в едно цяло със спирачките и дръжките за двуразрезната бленда за рентгеновия генератор. Към апарата може да се включва както буки-бленда, така и уред за прицелни снимки.

Апаратът може да се превключва за мрежови напрежения 150, 220 и 380 V. Един стъпален ключ позволява изравняване на всички отклонения на мрежовото напрежение. Тази регулация се отчита по волтметъра върху командната маса.

Работното осветление в рентгеновия кабинет се командва от помощни контакти на контактора за рентгеноскопия, които автома­тично го изгасяват при включване на високото напрежение и го за­палват при изключване.

Рентгеновият апарат Рд100 е комплектуван с универсален диагностичен статив за всички видове рентгенови изследвания на пациент в право,, легнало или наклонено положение. Характерен за него е прибраният единичен стабилен крак на опорната стена, едностранното (но дву- раменно) прикрепване на екранната рамка, което улеснява масовата работа с пациентите и събирането на едно място на всички командни ръчки на уредбата (спирачки, ръчки за двуразрязната бленда и ключа за далечно командване) (фиг. 2—3).

Кръстата глава на стативната колона позволява рамото с рент­геновия генератор да се завърта на 360°, за да се обслужва и второ работно място (напр. буки-маса).

В  Sandacite.BG ще Ви представяме и други малко известни български електромедицински апарати, като напр. този:

Български стоматологичен рентген от средата на 60-те

Първите български електрически крушки

Научете в Sabdacite.BG кои са първите български електрически крушки!

Първите български електрически крушки

Знаете ли кога започва производството на електрически крушки в България? В завод Светлина Сливен? Това наистина е известно предприятие, но то започва дейността си на основата на някои други, по-стари производители. Най-старият от тях е фабрика БЕЛФА Сливен.

На 1 юли 1933 г. в гр. Сливен няколко души, мужду които индустриалецът Апостол Стефанов, основават акционерното дружество БЕЛФА (Българска електрическа лампова фабрика). През 1933 един от ентусиастите предоставя парцел, върху който се построяват сградите на фабриката.  Германската фирма „Gladetz“ доставя производственото оборудване (машини и др.), а друга немска фирма, „Didier Werke“, построява потена пещ с четири тигли за топене на стъкло. БЕЛФА АД става акционер в сливенска електрическа кооперация, за да може да получава по-евтин електрически ток.

Щатният състав на фабриката през 1934 г. – годината на началото на дейността – наброява 20 работника и няколко техника.

Първата българска електрическа крушка светва през месец май 1934 г.

Дневното производство се движи между 1800 и 2000 лампи. В БЕЛФА се произвеждат стъклените колби, талерното стъкло и цоклите, а останалите материали и полуфабрикати са вносни.

БЕЛФА Сливен BELFA Sliven

През 1934 година във фабриката са усвоени и два патента, които са разарботка на стъклар от Сливен. Едната иновация въвежда нова технология за напръскване на светилната жичка с прахообразен червен фосфор, а вторият – за нов вид електрически лампи, които работят с жица, навита на двойна спирала.

Българските лампи БЕЛФА са с по-ниска цена, а по отношение на качеството не отстъпват на чуждестранните.  По думите на историка на българската електротехническа промишленост Кр. Станилов, ,,БЕЛФА става един от водещите производители в Европа“. От тази реклама се вижда, че произвежданите през 1937 г. техни крушки е между 5 и 500 вата (явно тогава хората редовно употребяват и лампи с мощност под 20 вата) и са изработвани различни модели за осветление както на жилища, така и на промишлени обекти, за трамваи, вагони и може би семафори, за поставяне на улични стълбове в градовете  и т.н.

Фабрика за електрически крушки БЕЛФА – реклама от 1937

Малко по-късно обаче западните фирми Тунгсрам и Осрам започват да заливат пазара с евтина продукция. БЕЛФА не издържа на конкуренцията и през 1939 г. фалира. Преустановено е производството на електрически крушки, а машините, съоръженията, наличните материали и детайли са консервирани.

Следният документ е изключително интересен за нас. Той е поместен в пилотния брой на сп. ,,Български радиолюбител“ от 1935 г. Представлява благодарствено писмо от директора на Електрическо дружество за София и България – белгийска компания, която притежава концесия за производство и продажба на електроенергия в София. От писмото са видни похвалните думи за експлоатационните качества на лампите БЕЛФА – две такива работят непрекъснато и вече успешно са надминали 1500 ч. безаварийна работа, а третата крушка, в действителност, вече е изгоряла, но не и преди да надмине 1550 часа работа. Писмото е адресирано до главния представител за България на лампите БЕЛФА Йосиф Меркадов.

БЕЛФА Сливен BELFA Sliven

Неслучайно Меркадов е решил в тази си реклама да приложи клиентски отзив, а не само хвалебствени думи за собствената си продукция, които сам е написал.


Литература:

Йорданов, Богомил Л.,  Василев, Васил В.,  Терзиев, Димитър Г.. Електротехническата промишленост в България :. [Очерк] /. София :, Техника, 1987.

К. Станилов, Цв. Христов, П. Дундаров, „История на електротехническата промишленост в България”, София, 2007 г.

Сп. Български радиолюбител, год. І, бр. 1 (1935)

Българска ценоизчисляваща везна ВЦЕ 10

Българска ценоизчисляваща везна ВЦЕ 10 вече е в Sandacite.BG!

Българска ценоизчисляваща везна ВЦЕ 10

Настоящото чудо ни попадна от битака благодарение на наш верен приятел. То е разработено в Института по приборостроене през 1985 г. и се произвежда от Завода за автоматични везни Лясковец. Електронната ценоизчисляваща везна с механично изменение на обхвата на измерване до 10 кг е предназначена за измерване, индикация и отпечатване на масата, единичната цена и цената на различни видове стоки. Ценоизчисляващата везна има възможност да запаметява и в края на работния ден да извлича сумарния оборот в сумите, натрупани от продажбите.

За първи път електронна везна с тези функции е разработена в същия институт още през 1981 г., но нямаме информация да е влязла в серийно производство. Най-вероятно е останала само като прототип. Тя се нарича ВМЦ-5 (Везна Микропроцесорна Изчисляваща) и работи с максимална тежест 5 кг.

5 години след това (1985) идва ред на усъвършенстван модел, наречен ВЦЕ-10. Ето го и нашият конкретен екземпляр, произведен през 1986. Дето се казва, разгледайте го от куртоазия. Не го гледайте, че е малко нещо – нямате си представа колко ни измъчи, докато го носехме – тежи близо 30 кг, доста е неудобен като форма и сме го мъкнали 3 км от тролейбусната спирка до входа! :)

Електронна ценоизчисляваща везна

Това горното е малък подвижен керамичен плот, върху който поставяте това, което ще мерите.

Везната има светлинни индикатори и от двете страни (клиент и търговец), за да сте сигурни, че не Ви лъжат:

Ценоизчисляваща везна 

Както е видно на рекламата от 1985 г., везната се свързва с касов апарат (вероятно някоя ЕЛКА) посредством RS232 интерфейс:

Ценоизчисляваща везна 

ВЦЕ 10 разполага с вградена автодиагностика и има възможност да проверява сама основните си възли и системи. Отстрани има пломба, чието ненарушаване гарантира за ненамеса на неквалифицирани лица в работата на уреда.

Външншният вид на ценоизчисляващата везна ВЦЕ 10, издържан естетично и ергономично, гарантира удобна и коректна връзка между клиентите и обслужващия персонал. Везната намира приложение в търговските предприятия, в предприятията за обществено хранене, в базите за разфасоване и др.

Основни технически данни:

Максимално натоварване 10 000 г

Минимално натоварване 100 г

Брой на деленията 2000

Клас на точност ІІІ

Завод за автоматични везни

Та така. Тoва е, значи, оборудването на някогашните Били и Лидъли. За толкова години второ чудо не сме изобщо и никъде срещали, така че може би наистина сме открили нещо наистина важно от историята на българската техника! Поздрави!

Николай Тошкович – първият български изобретател

Николай Тошкович – първият български изобретател

Никола Тошкович – първият български изобретател

Николай Стефанов Тошкович се смята за първият български автор на патенти и първият български изобретател. Сведенията за него  са твърде оскъдни, като не разполагаме дори със снимка на лицето му!

Роден е най-вероятно в Одеса през 1830 или 1831 г. в семейството на известния калоферски търговец Стефан Тошкович от известното българско семейство Тошкови. Семейството се преселва в Одеса през 1819 г. Николай учи в Технологическия институт в Петербург. По-късно живее в Одеса, където се ползва с голям авторитет – подпомага много българи да учат в тамошните училища. Никола Тошкович е член (от 1855 г.) на Селскостопанското дружество в Южна Русия и работи в областта на парните машини. Починал е през 1893 г. в Одеса.

През 1855 г. Тошкович заминава в Париж, където започва обучение в заводите на известната френска компания ,,Жан-Франсоа Кай и с-ие“ – един от най-големите производители на парни локомотиви, селскостопански машини и др. – за да изучава ,,художеството как се правят машините, които действат с пара, а особено ония машини по железните пътища“ (цит. по: Сава Филаретов, ,,Цариградски вестник“, бр. 330, 25.V.1857) – тоест парни локомотиви, а и други машини. Париж е мястото на най-плодотворна творческа дейност за Николай Тошкович – там през 1857 и 1859 той получава два патента, с което се превръща в първия български патентопритежател, а според световните принципи на техническата история това го прави и първия официално признат български изобретател. Също така, през 1860 г. тук завършва и ръкописа си ,,Практически бележки за параходите“.

Николай Тошкович Nikolay Toshkovich

Горе – единственият запазен автограф на Тошкович на заглавната страница на ръкописа му ,,Практически бележки за параходите“.

Както знаем, през средата на ХІХ век парният двигател е най-високотехнологичният и разпространен източник на тяга за влакове и кораби, но в средата на онова столетие парната машина все още е твърде далеч от онзи си вариант, в който век и нещо по-късно започна да напуска и последните си владения върху релсите. Но затова пък тогава тя най-стремително се усъвършенства и нейният принос за общото развитие на техниката е огромен. Важно е, че младият изобрета­тел Николай Тошкович се захваща  не да съживя­ва отживели времето си търсения, а здра­вото му чувство за съвременност го на­сочва към територии с голямо бъдеще и с възможности за усъвършенстване.

Постоянна цел на тогавашните конструктори конструктори на парни двигатели  е да получат по-високо КПД с по-малък разход на гориво и от по-малък двигател, като подобрят конструкцията – напр. на буталото, което да се уплътнява добре към цилиндъра независимо от степента на налягането, а същевременно с това и да не се изхабява от триенето при движение в цилиндъра. Тогава парният цилиндър бил най-слабото място на парната машина, и то най-вече поради недоброто уплътнение на бутало­то, което бързо се износва и заедно с това поврежда и самия цилиндър.

Първият български патент има решение за проблема. Николай Тошкович замисля парно бутало, което се уплътнява към цилиндъра с по­мощта на сегменти. Те се притискат към цилиндъра чрез пружини, които пък на свой ред притискат клинове, които  предават натиска върху сегментите. (Ако това звучи твърде сложно, накратко можем да кажем, че Тошкович предлага бутало, чийто натиск върху парния цилиндър се регулира автоматично чрез нова конструкция с вградени пружини.) Пружините са хитро решение, защото те притискат двата пръстена, от които се състои буталото, и така компенсират износването. Задачата не била никак проста, ако се съди и по това, че при хоризонталния парен цилиндър, за разлика от вертикалния, износването става едностранно от­долу.  Двата бутални пръстена са съставени от по осем сегмента. Буталото на Тошкович можело да се центрира без разглобяване на машината след работа.

Николай Тошкович Nikolay Toshkovich

На чертежа горе – различни видове гребни витла, анализирани в труда на Николай Тошкович.

Какви са били възможностите на Тошкович да построи прототип на своята идея, е трудно да се предпола­га. Но от следващите данни в съобщение­то на Сава Филаретов – че новото бутало постига икономия на пара и гориво от 16 до 18 процента – можем да съдим, че данните са получени експериментално. Филаретов дава и някои икономически показатели за изобретението – буталата на Тошкович са 3 пъти по-евтини от всички тогавашни бутала.

Преглед и оценка на изобретението са направени от сериозни френски институции – Дружеството за подкрепа на националната промишленост и Комитетът за механични изкуства. За изобретението което описахме по-горе, на 17 януари 1857 г. на името на Николай Тошкович е издаден френски патент № 30585. Toвa e пъpвият извecтeн пaтeнт, дaдeн нa бългapин. Интересно е, че той има и съпритежател – френският механик Франсоа Жерар – но в получения на 17.І.1857 документ за патента приносът на Николай Тошкович е несравнимо по-голям, защото името му стои на първо място.

Второто изобретение на българина е от 1859 г. и тук патентът вече е само на негово име. Става дума за корабна част – гребно витло с двойно действие от нов вид – което има непозната дотогава ефективност. Както е описано в патента, разработената от Тошкович конструкция е много по-икономична и с нея ,,получавате печалба за хода на кораба и за горивото, която общо е поне 25 %“. Това е мощна стъпка напред в сравнение с познатите дотогава витла. За него на 12.ІІІ.1859 г. Тошкович получава на свое име френски патент № 40180. Изобретателят разработва и чертеж, показващ принципа и някои от параметрите на съоръжението. Нещо повече, той създава и опитно устройство, на което корабен модел се движи както с дотогавашно, така и с неговото ново витло, и на практика доказва предимствата на изобретението си.

Николай Тошкович изобретател Nikolay Toshkovich izobretatel

Практическо устройство на гребното витло с двойно действие на Тошкович – вторият патент

Ръкописът на Тошкович ,,Практически бележки за параходите“ от м. май 1860, останал неиздаден, е първото българско техническо изследване по корабостроене. Родолюбивият автор го подарява на младия Софийски университет още в края на ХІХ век, за да подпомогне развитието на българската наука и техника. Ръкописът е бил положен в специално шкафче в Университетската библиотека с отбелязан върху капака надпис ,,Pъĸoвoдcтвo и плaнoвe пo мexaниĸa“, съдържащи още бележки. ,,Бележките за параходите“ са caмoбитeн нayчeн тpyд, който пpaви oпит дa paзглeдa в пo-гoлямa пълнoтa пapнaтa тягa във вoдния тpaнcпopт, ĸaтo ocoбeнo пoдpoбнo ca изcлeдвaни гpeбнитe витлa. Hиĸoлaй Toшĸoвич пpaви oпиcaниe и aнaлиз нa пoзнaтитe дo мoмeнтa гpeбни винтoвe и ce cпиpa нa тexнитe пpeдимcтвa и нeдocтaтъци. Haлицe e дoбpa epyдиция зa мaтeмaтичecĸи и xидpoдинaмичeн aнaлиз, тpyдът e изпълнeн c пpeцизнo изpaбoтeни чepтeжи. А прогнозите на изобретателя за бъдещия ефект от противоположно въртящите се съосни гребни витла се потвърждават от историята на корабостроенето в следващите десетилетия.

Според нас първият български изобретател Николай Тошкович  е един истински иноватор на ХІХ век – умът му е погълнат от търсенето на новото, от съдружието на човека с техниката. Този човек е пример за това какво може да постигне една талантлива личност, когато попадне в силно напреднало общество и делова среда, която му допада и стимулира творческото мислене на личността. Със сигурност той не би бил първи български изобретател, ако не бе успял да достигне до един от най-големите производители на двигатели и машини в тогавашния свят, защото във фабриката на Кай намира достойно място за изобретателския си ум. Едва ли в България от средата на ХІХ век Тошкович би намерил тези възможности. Но понякога е нужно да извадиш диаманта от глухото местенце, в което е скрит, за да заблести той със своя неповторим блясък. Самият Тошкович винаги е заявявал своя български произход, помагал е на българите навсякъде, където е живял, с любов е оставил диря в първите години на българското университетско образование и заслугата на първи български изобретател никой не може да му отнеме. 

Николай Тошкович изобретател Nikolay Toshkovich izobretatel

Анализ на силите, действащи върху лопатките на корабно витло – отново страница от ръкописа ,,Практически бележки за параходите“.

Никак не е изключено бъдещето да донесе нови сведе­ния за този ако не пръв, то сред първите българи — машинни инженери. Тогава на­вярно ще можем да знаем повече за творе­ца на нашето възрожденско новаторство.

Накрая ще цитираме част от съобще­нието на Сава Филаретов в „Цариградски вестник“ от 1857 година, с което нашият възрожденец се опитва да направи до­стояние на българските читатели вестта за първия патент на Николай Тошкович. Интересно е равнището на техническите познания на българина по онова време. В българския език тогава липсват дори най-обикновени технически термини (известно е, напр., че Иван Богоров нарича една от частите на парахода ,,тръкало“), та Сава Филаретов е принуден да обяснява патента така:

„Известно е, че най-голямата мъчнотия за сичките фабриканти и механици е била тази част на машината, която се нарича „паровой поршень“ (поршень е и оная дръжка, ръчица от тулумбата, която без- престанно пъхат и вадят тулумбаджиите в една друга по-голяма вита и валчеста металическа дръжка (цилиндър), за да сгъстяват с това въздуха, от налягането на който правят да се повдига водата и да стреля накъдето щат).

Безпрестанно се появяваха поршени, на­правени по нов начин, остроумно извърте­ни, разположени хитро, скачени с всякакви дъсчици и завъркулки; всичко това се при­ема, изпитва се и като гледат, че не влиза в работа, оставят го настрана и така си се и забравя. Николай Тошкович измислил сега такъв поршень, който отстранява тази мъчнотия: направата му е таквази, що той може да се употребява с години, защото колкото от една страна той се из­трива, толкова пък от друга страна, така да речем, от само себе си се разширочава и сичко си остава гладко и чисто…“

На долната снимка е изобразен гребен винт с двойно действие, патентован от Н. Тошкович през 1859 г. във Франция (табл. ХХІІІ на ръкописа му „Практически записки по параходите”, 1860 г.).

Първият български изобретател Parviyat balgarski izobretatel

 

Запознайте се с българския трамвай Т4М-54 от 1954 г.

Малко известният стар български трамвай Т4М-54 в Sandacite.BG!

Стар български трамвай Т4М-54

През 1954 г.  в София е пусната в пробна експлоатация новата трамвайна мотриса с моделно означение Т4М-54. Наречена е Мотрисата на мира по случай 10-годишнината от 9-ти септември 1944. Присвоен й е инвентарният номер 101, но по-късно е преномерирана на 231, както виждаме и на снимката по-горе. Работи по линия 5 заедно с ремарке номер 541, което е от модела Република, него го боядисват в синьо.

След красивите за времето си и удобни мотриси, които са били произведени няколко години преди това, тя се превръща в нов, ценен подарък на столичани от Трамвай­ния и тролейбусен завод „6 септември“. Всъщност наименованието Т4М-54 трябва да се чете като ,,мотриса трамвайна четириосна, разработена 1954 г.“

В тази статия ще се опитаме да я опишем за читателите на Сандъците сандъците.

Тази мотриса е боядисана в светлосиньо с бяла лента и има характерните за времето си заоблени външни форми, които й придават естетичен вид вид. Направени са старания трамваят да съче­тава грижата за удобството на пътни­ците и обслужващия персонал.

Трамвайната мотриса има максимална ско­рост 40 юм в час. На двете й двуосни колички са монтирани четири електро­мотора, всеки от по 45 киловата. Така всяка ос се задвижва от отделен елек­тромотор. Теглото, носено от двигател­ните колела, обуславя теглителната сила. В това отношение новата мотриса има съществено преимущество. Теглото й. около 20 тона, се използва изцяло за постигане на голяма теглителна сила, понеже всичките й оси са задвижвани от електромотори. Поради това идеяа е била лесно да мо­же да се обслужва проектираната тогава трамвайна линия „Дворецът на пионе­рите — Драгалевци“, която е щяла да бъде най-стръмната в София.

Колесата на тази трамвайна мотриса се разли­чават съществено от колесата на дотогава строените мотриси. Гривните, които се търкалят по релсата, са съединени чрез 16 гумени шайби за главината, коя­то е набита на оста. По този начин се постига плавен и безударен ход. Нама­ляват се ударите по релсите. Така се увеличава тяхната дълготрайност. По­неже при трамвайните мотриси токова­та верига се затваря между мрежата и земята през колелото (релсите служат за проводник), за да се избегне изола­цията, причинена от гумените шайби, гривната и главината са съединени с проводници.

На една от количките, които носят ка­росерията, е монтиран компресор, за­движван от отделен електромотор. Ком­пресорът дава сгъстен въздух за въз­душните спирачки, за затваряне и отва­ряне на вратите и пр.

Трамвайните мотриси работят с прав ток (тогава напрежението в трамвайната контактна мрежа е 550 волта). Това дава големи преимущества при регулиране скоростта на движението им. Тъй като правият ток не може да се трансформи­ра направо, за получаване ток с ниско напрежение е монтирано динамо което захранва акумулаторна батерия. Тя дава ток за електрическия звънец, електрическите светещи пътепоказатели, за електромагнитната релсова спирачка, резервното осветление, фаровете и др. Фаровете подобно на автомобилните са с къси и дълги светлини. По осветените градски улици се използват късите светлини, а извън града — дългите.

Каросерията на мотрисата лежи вър­ху двете колички чрез осем спирални пружини и осем листови ресори. Това дава възможност «а мотрисата да се движи спокойно и плавно. Ударите по релсите почти не се чувствуват. Мотри­сата има 26 места за сядане и 74 за правостоящи. Столовете са с лека тръбно-шперплатна конструкция.

Стар български трамвай Т4М-54

Трите врати на мотрисата (една за качване и две за слизане) дават възмож­ност едновременно да се качват двама и слизат трима души. Това позволява да се намали престоят по спирките. Така се увеличава средната скорост на дви­жението. Пътниците, които са за по-да­лечните спирки, минават напред и сли­зат през предната врата. За кондуктора има удобно малко издигнато над пода място до задната врата. Оттук, той мо­же свободно да наблюдава.

Мотрисата е радиофицирана. Токът за захранване на приемника се черпи от акумулаторната батерия, а не от мре­жата (както е при дотогава строените мо­триси) и поради това смущенията са почти избягнати. Вентилацията при но­вата мотриса е подобрена. Горните про­зорци могат удобно да се издигат и сва­лят. Това осигурява добро проветрява­не на въздуха над главите на пътниците. През зимата в мотрисата ще се поста­вят няколко електрически реотанови печки.

При трамваите от стар тип поради не­удобния стол и лошото разположение на пулта за управление ватманите в повечето случаи работят прави, което е доста изморително. В мотрисата Т4М-54 има удобен стол за сядане, а пултът е монтиран така, че ватманът работи винаги седнал. Ръчката за упра­вление на електромоторите е заменена с волан (както при автомобилите). Стък­лото пред ватмана е наклонено и има специален нагревател, който зиме го предпазва от заледяване. Двете извити странични стъкла на мотрисата прида­ват красив аеродинамичен вид.

Стар български трамвай Т4М-54

Количките, които могат да се въртят около вертикална ос, а също и да се наклоняват странично, позволяват на мотрисата да взема лесно острите завои по улиците на града. В трамвая Т4М-54 ра­мата и каросерията са обединени в единна конструкция. Красивата и удобна каросерия понася целия товар на пътниците. Това намалява теглото с 20—30 % и поевтинява мотрисата.

Върху покрива на Т4М-54 са монтирани реостатите за електромотори­те, гръмоотводът и др. Отпред има авто­матична предпазна скара. Тя действа много сигурно, като се откача и при най-лекото допиране независимо от кон­трола на ватмана. С това се предотвра­тяват нещастните случаи.

Мотрисата Т4М-54 е снабдена с четири ви­да спирачки:  електрическа, въздушна, електромагнитна и ръчна. Електрическата спирачка е основна работна спирачка и действува пряко върху електромоторите по електричен път. С въздушната спи­рачка се действува, когато мотрисата вече е забавила хода си, а с ръчната — при крайни спирки и при нужда. Новост за мотрисата са четирите електромаг­нитни релсови спирачки. Тяхното дей­ствие е резултат на притегателната си­ла (общо 18,000 кг), създадена между четирите електромагнита и релсите. Електромагнитната спирачка получава ток от акумулаторната батерия, така че тя ще може да работи и тогава, когато се прекъсне токът в мрежата. Тя ще се включва при големи наклони, когато е необходимо бързо опиране.

Конструкцията на тази мотриса е съобразена с тогавашните идеи за бъдещо развитие на трамвайния транспорт, защото проектът е бил трамвай­ните композиции — мотриса и ремарке – да се заменят с единични мотриси.

Явно обаче, въпреки големия ентусиазъм по изработката на този трамвай и високите очаквания към него, качеството му не е било на особено високо равнище. Мотрисата дава много дефекти, прекарва много време в сервиза и през 1971 година е бракувано след авария, причинена от новата й за тогава конструкция на контролера. (Схемата му е съвсем различна от контролера на Републиките КД и КД-57, монтиран на мотриси №231 – 240.)

А ето къде и кога всъшност е началото на трамвайното дело в България…

Какво са Кардалевите ремаркета и кой е техният създател

Непознатите български електрокари и мотокари

Непознатите български електрокари и мотокари в Sandacite.BG!

Непознатите-български-електрокари

Днес в Сандъците сандъците имаме една загадка за Вас. Разглеждайки старите архиви, попаднахме на план за развитието на производството в Комбината за електрокари 6 септември. Този документ е писан през 1964 г. Ние добросъвестно го пренасяме тук и, тъй като имаме дълбока вяра в информираността на своите потребители, се осмеляваме да Ви зададем следните два въпроса:

  • долните модели електрокари влизат ли действително в масово производство?
  • можете ли да си припомните дали сте виждали или работили с такива?

Предприемаме тази наглед нетрадиционна изследователска стъпка, понеже често се случва да заложените в плановете бъдещи модели да не бъдат качени на производствените поточни линии. Такива случаи има много – първите примери, за които се сещаме, са тези с телевизорите Родопи и Витоша например.

И така, приятно разглеждане! :)

Електрокари с едно задвижвано и управляемо колело. Поради малките си размери те са много удобни за работа в тесни помещения. Предните ко­лела са само носещи, а едно от задни­те колела е едновременно и двигател­но, и управляемо, докато другото се движи свободно. Разработени са вари­анти на високоповдигачи с височина на повдигане на товара до 3,2 и 4,5 м и нископовдигачи с височина на повдигане до 1,25 м. Управлението е воланово, като седалката за водача е разположена перпендикулярно спрямо посоката на движение.

Електрокар високоповдигач Elektrokar visokopovdigach

Разновидност на тези електрокари е високоповдигачът

с надлъжно изнасяне на повдигателната уредба.

Особено удобен е за работа в складове с тес­ни коридори. Задвижването на електро­кара се осъществява посредством дви­гател, вграден вертикално в колона, уеднаквена както за цялата група, така и за групата на ръчноводимите електрокари. Тяхната скорост на движение е 8 км/ч.

Ръчноводими електрокари

Ръчноводими електрокари Rachnovodimi elektrokari

Разработени са ръчноводим високоповдигач с това­роподемност 1000 кг и ннскоповдигач с товароподемност 2000 кг. Поради ми­нималните си размери и малки тегла те могат да влизат в асансьори.

Ръчноводимите електрокари се управляват от водач, който върви до електрокара.

Командването им става посредством вградени в ръкохватката за управление микровключватели. При пускане на ръ­кохватката тя се връща в нулево поло­жение, при което се задействуват спи­рачката и се прекъсва токът. Скоростта на движение на тези електрокари е от порядъка на 4 км/ч с номинален товар. Високоповдигачите повдигат товарите на височина до 1,7 м, 3,2 м и 4,5 м, а нископовдигачите — до 1,25 м. Предвидени са по два варианта за все­ки тип — с товарна платформа и с вилица за палети.

Електрокар високоповдигач Elektrokar visokopovdigach

Електрокари и мотокари с напречно изнасяне на повдигателната уредба. За да се осигури рационален и сигурен транспорт на дълги предмети, като дървени трупи, тръби, греди, ламарини и други, който с обикновените типове електрокари се осъществява много трудно,  през 1964 г. в Института по електрокари и мотокари започна създаване­то на група електрокари и мотокари с напречно изнасяне на повдигателната уредба. Електрокарите имат товаропо­демност 1 и 2 тона, а мотокарите — 3 и 5 тона и височина на повдигане до 4,5 м. Тяхната скорост на движение е около 13 км/ч. Управлението е воланово, а за водача е предвидена специална кабина. Регулирането на скоростта ста­ва плавно, безстепенно, посредством безстъпален контролер. Предвидени са около 11 блокировки за предпазване от неправилни манипулации. Тези машини са снабдени с пълна осветлителна и сигнална уредба, изисквани от Правил­ника за уличния транспорт. От тази група е готов за серийно производство електрокарът с товароподемност 1000 кг.

Мотокар високоповдигач Motokar visokopovdigach

Освен гореизброените групи електрока­ри и мотокари заслужава да се отбеле­жат още: електросамосвалът с товаро­подемност 2000 кг с накланяща се на три страни товарна платформа. Накла­нянето се осъществява по хидравличен начин. Машината има скорост на дви­жение 13 км/ч. Електромобилът с то­вароподемност 1500 кг ще бъде много подходящ за близък градски превоз — за разнасяне на мляко, продукти и други. Мотокарът високоповдигач с товароподемност 3000 кг и височина на повдигане 3,2 м е снабден с дизе­лов вдигател българско производство и от­говаря на съвременното спрямо 1964-5 г. световно ниво.

Електрокар самосвал Elektrokar samosval

През същия период сътрудниците на Института разработват още редица нови конструкции електрокари и мотокари с високи тех­нически показатели.

Бетонконтрол 80 и какво може той

Бетонконтрол 80 и какво може той

Бетонконтрол

В най-общия случай компонентите на бето­новата смес са цимент, пясък, вода и химически добавки. Доколко предвиденото от рецептата съотношение между тях ще бъде изпълнено зависи от точността на до-заторните устройства, влизащи в оборудва­нето и… от набитото око на оператора. Как се проявява субективният фактор? Ра­ботата е там, че рецептата за съответната марка бетон е съставена на базата на сухи инертни материали, но те рядко са такива Влажността на чакъла може да достигне 6 процента, а на пясъка —16! При стотиците килограми от тези материали, които се намират в смесителя, голямото количество но водата, попаднала „извънпланово“, може да понижи чувствително якостните характери­стики на крайния продукт.

Да речем, че операторът, благодарение на големия си опит и нюх, успее да налучка излишните литри и да ги компенсира. Затова пък той няма да компенсира килограмите инертни материали, дозирани в по-малко за сметка на водата, пропита в тях. Дори качествата на получения бетон да са задо­волителни, количеството му ще бъде значи­телно намалено за сметка на „спестените“ евтини инертни материали.

Освен спазването на рецептата, задължи­телно е бетонната смес да бъде доведена до еднородно състояние. По принцип тук са от значение възможностите на самия смеси­тел. Продължителността на неговото върте­не също влияе. Тя не винаги е оптимална, а по-скоро има някаква средна стойност, което е още една вратичка за грешките.

Бетонконтрол

Производството върви, но проблемите ча­кат своето решение. През 1979 г. те стават предмет на дого­вор между Стопанския комбинат Стомано­бетонни конструкции и изделия и Института по техническа кибернетика и роботика на Българската академия на науките. Доколко отговорно са подходили научните работни­ци личи от факта, че след по-малко от го­дина на Международния мострен панаир в Пловдив през 1980 г. е показан готовият про­тотип иа Бетонконтрол 80, снабден с управляващ блок, който представлява микро­процесорна система от модулен тип. Ето някои подробности за това какво са успели да постигнат специалистите от секция „Ки­бернетични системи за управление на техни­чески обекти“ с ръководител н. с. Кънчо Трополов.

Бетонконтрол 80 е система за управле­ние на технологичния процес при производството на различни марки бетон, произвеждани в бетоновите центрове, съоръжени със съ­ветско оборудване. Чрез подходящи датчици тя измерва влагосъдържанието на инертните материали, пресмята теглото на водата в тях и на тази основа коригира базовата ре­цепта, съставена за нулева влажност. Точ­ното спазване на съотношенията, осигурено по този начин, води до произвеждането средно на 6 на сто повече бетон и до иконо­мия на цимент. Системата позволява едно­временно дозиране на инертните материали, цимента, водата и химическите добавки, с което се съкращава технологичният цикъл. Освен това тя осигурява и предписаната консистенция на сместа.

В началото на 1980-те г. Бетонконтрол 80 влиза в редовна експлоатация в Завод за стоманобетонни конструкции „Генерал Ганецки“ Плевен. Интересът, проявен от наши и чужди специалисти към нея, e голям и според нас от  – сандъците напълно заслужен. По своите показатели тя превъзхожда подобните системи, разрабо­тени в други страни. Едно признато изобре­тение и три други заявки за изобретения, които са били проучени, потвърждават, че при разработката колективът е следял отблизо световните постижения. Разговорите с отговорни служители в тогавашното Мини­стерство на строежите и строителните ма­териали, според авторите, са довели до общото становище, че системата трябва да бъде внедрена в цялата страна. Изчисления­та за евентуалния икономически ефект сочат осемцифрени резултати. Точно по това време се оформя идеята колективът да започне рабо­та и над дозиращите системи и пълното управление на технологичния процес в бе­тоновите центрове — една задача колкото интересна, толкова и сериозна.

Илюстрация: сп. Наука и техника за младежта 1980 г.

Exit mobile version