ИЗОТ 1015С – електронна търговия през 1981 г.

Sandacite.BG днес ви показва компютризирана система за големи магазини от 1981 – ИЗОТ 1015С.

ИЗОТ 1015С

Както и днес, така и преди десетки години в големите търговски обекти дневно се продават хиляди стоки. За да може бързо и ефикасно да се обслужват купувачите им и едновременно да се води счетоводство за продажбите, е необходимо стоката бързо да се маркира, да се отрази като продадена, цената като платена, а наличността – като променена. Ясно е, че дори с механичен касов апарат това става бавно – защо е нужно човек ръчно да въвежда информация за стоката, ако тя може да се прочита и въвежда в електронна компютризирана система автоматично?

Затова през 1981 г. е създадена системата ИЗОТ 1015С, наречена още ПОК Търговия. Ако помните от ТАЗИ наша статия, съкращението ПОК означава ,,проблемно-ориентиран комплекс“ – система (група) от няколко комуникиращи помежду си електронни устройства, които работят синхронно по дадена задача. Всяко от тях извършва различни детайли от работата и е отделен блок/модул на целия комплекс. Различните устройства в ПОК-а са произведени от различни заводи, но са взаимно съвместими. Работата им се управлява от устройство с микропроцесор.

Според вида на специализираната дейност наборът работещи заедно устройства в ПОК-а е различен. Някъде има касов апарат с печатащ механизъм, някъде не. Някъде има тестери за печатни платки, другаде не. Някъде има принтер с широки възможности, другаде не толкова.

ИЗОТ 1015С е използван в големи магазини с широко разнообразие от стоки. Представлява система за компютризирано и всестранно автоматизиране на продажбите – от въвеждане на идентификационните данни на новозаредените стоки до запис и архивиране на продажбения процес от работния ден. Състои се от следните устройства:

  • Елка 90 (на снимката – в средата, отгоре) – електронна регистрираща каса, която автоматично чете етикета, който съдържа информацията за всяка стока и нейната единична цена (за етикетите след малко) или тези данни се въвеждат ръчно от клавиатурата на Елката, ако етикетът е повреден/нечетим. Етикетите са на магнитен принцип и се четат с четец във вид на… напр. морков, който се включва към апарата с 1,5-метров кабел. При вярно прочитане касата кратко изписуква и цената на маркираната стока се натрупва в регистрите на Елката. Данните за продажбите за даден период заедно с идентификационните данни на търговския обект и конкретното касово място могат своевременно да се записват на 8-инчови дискети (особено при отдалечени касови места) чрез флопидисково устройство, включено към Елката. Накрая във всички случаи те се подават към магнитолентово устройство за дълбоко архивиране. Времето за прочитане на 1 дискета и пренасяне на данните върху магнитната лента е 5 минути. Една каса може да се използва от до 6-има оператори (всеки със собствен ключ), отчита оборот от до 5 стокови групи и приема 4 начина на плащане: в брой, с чек, на кредит и с купон. Може и да отчита напр. отстъпки в проценти;
  • ИЗОТ 6503С (в средата, под Елката) – събира и записва на дискета информацията за продадените стоки, изпратена му от Елките. Към 1 бр. ИЗОТ 6503С се включват най-много 3 каси, с оглед препълването и честата смяна на дискетата. Капацитетът на 1 дискета е около 12 000 съобщения от касовите апарати;
  • ИЗОТ 6601С (най-вляво) – магнитозаписващото устройство – то изработва и отпечатва самите етикети. След запис извършва проверка, отпечатва визуалната информация – нея чете четецът на Елката – чрез мозаечна печатаща глава (подобно на матричните принтери), перфорира готовите етикети и ги навива на руло. Етикетите се отпечатват на картонена лента с широчина 25 мм с нанесен магниточувствителен слой и дължина на лентата в рулото ~120 мм. Магнитната информация на етикета се кодира в символи, като до 7 символа са предвидени за въвеждане на единичната цена, 11 – на номенклатурен номер и до 24 за допълнителни идентификационни признаци като ръста, размер, цвят и т.н. Етикетите са в 3 типоразмера – 25, 50 и 75 мм – като най-малкият съдържа само цена и номенклатурен №. Може да се отпечатат до 9999 етикета с еднаква информация, т.е. за 9999 броя от еднакъв вид стока. ИЗОТ 6601С отпечатва до 4000 етикета/час при най-големия размер етикети и до 10 000 при най-малкия;
  • централна управляваща каса – с нея (в кръгов интерфейс) са свързани касовите апарати (терминали) и архивиращото магнитолентово устройство. В един кръг могат да работят до 20 Елки (т.е. магазинерски каси), отдалечени на макс. 1500 м една от друга, а връзката е по двуканална линия. От централната каса се определят дата и час на работа, № на обекта, операторът въвежда данни за рекламации, за ведомствени (вътрешни) продажби, за прехвърлени в другимагазини наличности и т.н. Центр. каса управлява обмена на данни между устройствата, верифицира съобщенията от касите, комплектова блоковете данни за запис върху магнитна лента, освен това в нея се намира часовникът за времеви интервали и т.н.;
  • ИЗОТ 6502С, т.н. концентратор на данни – съдържа 2 контролера, грижещи се за: 1) обмена на данните между Елките и концентратора и 2) за конвертирането и записа на данни от флопито на магнитна лента. Първото извършва контролерът ИЗОТ 6502С.Е001, а второто – 6502С.Е002. След всяка продажба касовият апарат изпраща към концентратора съобщение с данните от етикета на продадената стока, както и други – напр. общия оборот до момента.
  • ИЗОТ 5003 (в синия шкаф) – устройството записва и архивира получените данни на 1,5-инчова магнитна лента. Данните се записват в блоков формат с дължина на един блок 800 байта, като 360 метра лента побира данни от работата на 40 каси за 3 дни или около 195 000 осъществени продажби.

След запис информацията вече лесно се обработва с грамаден компютър от серията ЕС или СМ и се правят различни изводи от продажбите – напр. следене на търсенето, създаване на набор за движението на стоките и т.н. Операционната система е ДОС, а самите приложни програми са доставени от завода производител, но може и да им се включат специфични функции по заявка на организацията, закупила ИЗОТ 1015С за употреба в търговските си обекти – напр. ДСП Универсални магазини.

След обработка на донесените на лента данни с приложния софтуер закономерностите могат лесно да се разгледат в т.н. табулограми, които програмата създава. Те показват сведения и обстоятелства като напр.: каква е организационната структура на дадения търговски обект, каква е натовареността на обслужващите касии отделните смени по часове, ежедневна отчетност за работата на касите, може да се разбере дали е изпълнен финансовият план за определен период, коя смяна е продала най-много за зададено време (седмица, 10 дни, месец, тримесечие), има ли закъснели и/или недоставени заявки, кои стоки и кои подвидове от тях са се продавали най-много и т.н. Може и да се създаде картотека само от подбрани стоки, за да се наблюдават много параметри; ако са модни стоки – дали има изостанали наличности с изтекла сезонна актуалност, кой десен или модел от дадена стока се е продавал повече или по-малко в сравнение с друг и т.н.

Да добавим също така, че ИЗОТ 1015С е защитен от загуба на данни при пад на напрежението. Освен това, всеки буфер данни от 800 байта, готов за запис на лентата, както и подготвените, но неизпратени съобщения от Елките се запазват в енергозависимата памет на тези устройства за поне 10 дни, като електрозахранването се поддържа от малогабаритни акумулатори. Ако даден касов апарат бъде изключен от линията, тя се затваря автоматично чрез електромагнитно реле.

А ето ви тук и още един ПОК, да му се порадвате ==>

ИЗОТ 1008С Бензин – нов проблемно-ориентиран комплекс!

Какви изчислителни центрове има и какво се прави в тях

В Sandacite.BG днес разказваме подробно за митичните изчислителни центрове.

Компютър ЕС 1035 в изчислителен център

В развитието на професионалните компютри в България важно понятие са изчислителните центрове. Те са основните организационни звена, в кои­то се осъществява информационното обслужване и съответно през 70-те и 80-те г. работят българските суперкомпютри от серията ЕС, за които сме ви разказвали. Тези центрове са много видове и сега ще ги разгледаме по-подробно.

Изчислителни центрове могат да се създават в рамките на различни организации, обединени от своя отрасъл. Да вземем напр.  транс­порта. Там центрове може да има в специализирани автостопанст­ва в пощенските съобщения а също и в някои по-големи организации, пред­приятия и учреждения.

По аналогичен начин стоп въпросът и с енергетиката. Там се образуват и поддържат изчислителни центрове в големи предприятия и организации, които са извън организационните рамки на специали­зираната отраслова организация.

Именно в тази светлина се налага да бъдат разгледани функ­циите, структурата и организацията на различните видове из­числителни центрове, които съществуват в България още от края на 60-те години.

По  функционално предназначение използваните у нас изчислител­ни центрове могат да се класифицират по следния начин:

  • ведомствени изчислителни центрове;
  • учебни изчислителни центрове;
  • изчислителни центрове за колективно ползване.

Първо да разгледаме ведомствените изчислителни центрове. Те са главният вид, с който досега сме ви давали пример за приложение на големите компютри от серията ЕС. Ведомствени ИЦ се изграждат в дадено предприятие, за да задоволяват неговите нужди.

Ведомствените ИЦ се делят на две големи групи. В едната влизат онези, които обслужват едно предприятие или организация в рам­ките на дадено ведомство (напр. ИЦ към Държавния комитет по планиране, към Комитета за наука, технически прогрес и висше образование, към Металургичния комбинат „Кремиковци“, към Химическия комбинат във Враца и др.). Ха­рактерно за тази група изчислителни центрове е, че те са органически свър­зани със системата за управление и в максимална степен са съобразени с нея и нейните особености. Създаването на подоб­ни центрове се налага или от мащабите на обслужваното пред­приятие или организация (ИЦ към МК „Кремиковци“), или от спецификата на решаваните в тях задачи (ИЦ към ДКП).

Втората група ведомствени изчислителни центрове са тези, които обслужват група предприятия или органи­зации, подчинени на дадено ведомство. Подобни ИЦ се създават, когато това се на­лага от спецификата на информацията, която се обработва. Характерни в това отношение са ИЦ към Централното статистическо управление (то е към Министерския съвет на тогавашната НРБ) или към системите на Министерството на народната отбрана и Вътрешното министерство, където характерът на информацията налага специални изисквания по отношение на поверителността. Знаем и че в широко разпространените окръжни изчислителни центрове, каквито преди 1990 г. има във всеки окръжен град, на големи компютри с магнитнодискови и магнитнолентови запаметяващи устройства се обработва всеобхватна статистическа информация, която идва от всякакви заводи, предприятия, училища, болници и т.н. в окръга – напр. колко бебета са се родили в еди-кой си град тази година, колко продукция от даден вид е била произведена в еди-кой си завод, колко служители са ползвали болничен за даден месец и на базата на какво заплащане колко им е било обезщетението и т.н. Други примери за ИЦ към звена на подчиннение към по-големи са ИЦ на завод „В. Коларов“ — Бургас, на Електроапаратурния завод Пловдив или на комбината „Г. Генев“ – Габрово.

Компютър ЕС 1035 в изчислителен център

Учебните изчислителни центрове се изграждат към ВУЗ-овете  и средните специални учебни заведения (най-вече техникумите, разбира се), а и към някои организации, които извършват фир­мена подготовка на специалисти. Независимо от различните варианти, в които тези ИЦ могат да съ­ществуват, основната им функция е свързана с обучението и повишаване квалификацията на кадрите. Заедно с това те изпълняват задачи, свързани с научноизследо­вателската работа на преподавателите и обучаваните, а освен това се ползват и за  определени производствени задачи. Така например, в дадено учеб­но заведение редица поставени на студентите/учениците се из­пълняват от тях в ИЦ с помощта на компютрите, за да придобият те умения и навици да работят с тях. Такива задачи напр. са: класиране на участниците в приемния конкурсен изпит, съста­вяне на разписание за провеждане на учебните занятия и из­питните сесии, водене на сведения за успеха и др.

Във всеки изчислителен център, без значение за какво се използва, има екип от проектанти и програмисти, които работят по проектното и програмното осигуряване на зада­чите, решавани с помощта на компютри. Между техните пултове за управление, запаметяващи устройства и контролери се разхождат операторите. Забелязвате, че никъде по пода няма кабели – това е, защото те са под настилката, за да не се спъват хората, т.е. подът е двоен.

В структурата на учебните ИЦ съществуват две звена – по подготовка на данните и по елек­тронна обработка. За тях са осигурени достатъчно оператори демонстратори, които работят на компютрите или непосредствено да наблюдават работата на обучаваните. Разбира се, има и екип по тех­ническото осигуряване на учебния процес – тези хора извършват ежедневното техническо обслужване на машинния парк.

От икономическа гледна точка учебните изчислителни центрове са вътрешноведомствени, бюджетни мероприятия на стопанска сметка.

Разбираемо, в синхрон с подетите през 70-те години държавни лозунги за ,,електронизация на народното стопанство“ и ,,електронизацията – стратегическа задача“ и ускоряващата се компютризация на българския обществен живот, ролята на учебните ИЦ е водеща за подготовката на кад­ри за различните отрасли, в които се използват компютри.

Компютърно устройство с магнитна лента ИЗОТ ЕС9003 в изчислителен център

Изчислителните центрове за колективно ползване (ИЦКП), които са основна организационна форма на информационно обслужва­не при поставяне на тази дейност на индустриална основа, имат по-различни функции. В българските условия тези функции се оформят в три основни направления:

  • информационно обслужване на отделни предприятия и ор­ганизации;
  • информационно обслужване на териториалните органи на социално управление (окръжни, градски и др.) се изразяват в комплексното информационно обслужване на предприятията и организациите на дадена територия. Тази функция позволява компютърната техника в ИЦ да се обслужва по-малки предприятия и организации;
  • диспечиране на информационния обмен между органите на социално управление на различните негови равнища.

В структурата на ИЦКП също трябва да има различни производствени звена. Обикновено има по един отдел „Електрон­на обработка на данни“. Но в ИЦКП, където се експлоатират по 2 — 3 и повече големи компютръа и в които се извършва огромна по обем работа по подготовка на информацията за обработка, са обособени няколко структурни звена, за да има нормално ръководство на производствения процес. Това изисква формирането на необходимия брой отдели и участъци. Техническото обслужване на концентрираната в по-големи мащаби сложна техника на ИЦКП е причина за наличие на технически отдели по подрръжката, но в случай на по-сложни повреди (напр. ако се наложи дадено устройство да се отнесе за ремонти) от ИЗОТ централно докарват ново оборотно устройство, докато ремонтират повреденото.

Надяваме се, че с тази статия поне малко сме доближили до вас тайнственото понятие ,,изчислителни центрове“. Ето едно типично лентово запаметяващо устройство, използвано в тях:

ИЗОТ ЕС 5012.03 – компютърно лентово устройство или 300 кг шкаф?

 

Българският компютър PGC6400 от 1986 г. – прототипът на Пълдин 601

Sandacite.BG разбрахме как е изглеждал българският компютър PGC6400 – прототипът на Пълдин 601.

Български компютър PGC6400

Серията български 8-битови персонални компютри Пълдин е сред легендарните произведения на нашата електроника. Тези машинки остават и много запомнящи се, главно със своята квазисензорна клавиатура. Тя е заемка от компютрите, използвани в индустриална среда, където такава клавиатура най-лесно се защитава от прахови натрупвания:

Клавиатура на компютрите Пълдин

Първият Пълдин – 601 – се появява през 1988 г. и хардуерът му е производство на Завода за сензори и сензорни устройства в Пловдив. След него има и други модели, като напр. 601А от 1989 г.:

Български компютър Пълдин 601А

Корените на тази поредица обаче се появяват още през 1986 г., когато на бял свят излиза машината с не съвсем българското име PGC6400. Този компютър по-късно се превръща в прототип на Пълдините. Той е разработен в Научноизследователския институт по съобщенията ,,Хараламби Трайков“, а проектът е финансиран от ТНТМ. Създателите му са няколко души, сред които  н.с. Ясен Диамандиев и н.с. Мария Бърдарова. Както си му е редът, новият ПК е представен на Пловдивския панаир същата година. Именно този момент виждате на първата снимка в публикацията, а и на тази по-долу.

PGC6400 има някои разлики с по-сетнешния модел Пълдин 601 и останалите от серията. Така например, кутията му е метална, а не пластмасова. Клавишите са в черен цвят, а не в синьо и бяло. Тази снимка дава отговор на понякога задавания въпрос какъв монитор е използван по-късно със стандартните Пълдини – ами обикновен ВММ 310х от михайловградския завод Аналитик, не е правен специален за серията.

Идеята за приложение на PGC6400 е била към него да се включват различни измервателни уреди, данните от които да се прехвърлят, събират и обработват в компютъра. Само че този комплект  да се използва не в лабораторна среда, а да се пренася където е нужно. Оттам и нуждата от клавиатура, по-лесно защитима от мръсотия – все пак измервателната техника често се транспортира и употребава на мястото, където има повредено устройство. По същата причина се налага и компютърът да е малък, тънък и лек и да се носи по-лесно от дотогавашните Правеци.

Български компютър PGC6400

На панаира директорът на Сензорния завод в Пловдив забелязва новата машинка, тя му харесва и той предлага на ръководството на НИИС да произвежда този компютър, а след това ЗССУ и НИИС сключват за тази дейност договор на стойност 100 000 лв. Тук вече започва историята на Пълдините, която е предмет на друга статия.

PGC6400 е 8-битов компютър. Както и Пълдин 601, той използва българския микропроцесор CM601, произвеждан в Ботевград, с тактова честота 1 мхц. RAM-та е 64 кб, а в графичен режим резолюцията е 320 х 200 пиксела. (Видеоконтролерът на компа поддържа три режима – буквено-цифров (още наричан текстов), полуграфичен и пълен графичен.) При използване на графичния броят на символите в 1 ред на монитора е 52, а редовете са 24. Клавиатурата е квазисензорна и съдържа 77 клавиша (толкова са и при Пълдините), сред които 15 функционални (най-горният ред) и 4 за управление на курсора в четирите основни посоки, тъй като тук все още не е предвидена поддръжка на миша. Предвидени са възможности за включване на принтер и като външна памет – само касетофон. Операционната система е UNI-DOS. Физическите данни са: размери 360 x 255 x 93 мм, тегло 3,5 кг. Доста по-удобен за разнасяне в сравнение с Правеците!

Към момента на панаирното представяне на PGC6400 разработката на широка гама софтуер за него още предстои. Все пак още при представянето си той разполага, разбира се, със системна програма Монитор. След това за PGC и т.н. директен текстов интерпретатор – език за програмиране от високо ниво, който изпълнява операторите на БЕЙСИК. Има и обикновен БЕЙСИК. Написана е и текстообработваща програма, наречена Екранен редактор, като генериран с него текстов файл може да бъде използван от текстовия интерпретатор. След това този софтуер става и част от този, използван при влезлите в серийно производство компютри Пълдин.

А тук намерихме един също много рядък български компютър – не сме ни чули, ни видели втори такъв:

Български 8-битов компютър за електрокардиография от 80-те г.

Серийна разширителна карта с RS232C интерфейс за Правец 8х

За Правец 8х е произвеждана и серийна RS232C-разширителна карта, научи Sandacite.BG.

RS232C-разширителна карта за компютри Правец 8

RS232C е може би най-използваният интерфейс за свързване на външни периферни устройства към персоналните компютри от 80-те. Употребяват го най-вече принтери и плотери, но не само. Затова не е чудно, че много устройства го ползват и въпреки че напр. Правец 8С (1990) има фабрично вграден такъв конектор, по-ранните нямат и се налага да им се добави допълнително, защото напр. по-ранният Правец 8М (1985) или има само конектор за касетофон. От RS232C-конектор са лишени също Правец`82 и 8А.

Поради тази причина през 1986 г. в НПО Научно приборостроене е разработена серийна разширителна платка с RS232C интерфейс. Тя се включва в свободен слот на дънната платка на 8-битовия компютър и добавя много функционалности – напр. по този начин можете да прехвърляте файлове между 8-битов и 16-битов Правец! Екстра, нали?

Платката съдържа три вида комуникационни програми:

  • протокол X ON/X OFF за управление на споменатите по-горе извеждащи устройства за графична информация;
  • входно-изходна програма – изпраща команда PRINT към платката и също така насочва към нея командите INPUT и GET,, за да боравим с различните функции на принтера напр.;
  • както и програма, която превръща компютъра в комуникационен терминал, за да се включи в мрежа с други – сетете се за прехвърлянето на файлове, което споменахме по-горе. В такъв случай платката ще действа горе-долу както LAN-карта в днешна домашна компютърна мрежа.

RS232C-разширителната платка съдържа и три вида входове и изходи:

  • потенциален, по V24;
  • диференциален за далечна комуникация;
  • 20 А токов кръг и скорости на обмен от 600 до 19 200 бода (тоест бита/сек).

Даа… А ето и една истинска българска компютърна мрежа, малко известна, между другото:

CompAS – българска локална компютърна мрежа от 80-те г.

Микролаб от 1986 – БГ компютърна образователна система

Вижте в Sandacite.BG какво прави Микролаб – БГ компютърна образователна система за упражнения по електроника.

Микролаб – компютърна образователна система

Неразделна част от образованието по електроника в техникумите и висшите учебни заведения е редовното провеждане на лабораторни упражнения по електротехника, електроника, различни технии дялове – електротехнически материали, измервателна техника, полупроводникови елементи – и т.н. Навремето за този цел са отпечатвани стотици книги, заглавието на които винаги започва с ,,Ръководство за лабораторни упражнения по…“.

Обикновено упражнението протича, като се изследва  даден обект (уред, схема и т. н.) чрез пода­ване на въздействия на входа му и се наблюдава неговата реакция (това е т.н. метод „стимул – реакция“). Чрез мно­гократно повтаряне на три еле­ментарни действия — подаване на входен сигнал, измерване на изходния сигнал и записване на двете стойности — се получава т.н. предавателна характеристика на обекта. Така обаче се губи доста време, а получените резултати често са неточни. Дори и след въвеждане на компютрите в упражненията зададените и измерените стойности пак трябва да се въведат на ръка чрез клавиатурата. След това се извършва обработка (математи­ческа или графична) с подходя­ща програма и при нужда резултатите се отпечатват. Тоест, по този начин компютърът облекчава само обработката на получените ре­зултати, а самите те продължават да се получават примитивно. 

Затова през 1986 г. Направление ,,Учебно-производствена дейност“ на ВМЕИ ,,Ленин“ – София (днес Технически университет) се замисля да автоматизира още повече процеса на упражнения и проектира системата, която виждате на първата снимка. Това е Микролаб! Между 1986 и 1987 г. той е пуснат в опитна употреба, като с него се провеждат лабораторните упражнения по дисциплината Изчислителни аналогови устройства и системи, преподавана в катедра Изчислителна техника на ВУЗ-а. Тъй като Микролаб се оказва много удобен, през 1987 г. започва производството му за нуждите на ВМЕИ. Днес ще разгледаме по-подробно какво съдържа и как се работи с това любопитно нещо.

Микролаб – компютърна образователна система

Навремето Микролаб е наречен ,,интелигентна система“. Първото важно обстоятелство в неговата работа е, че с него компютърът може да се свърже непосредствено към изследваната схема (т. е. машината работи в „реално време“). Това ускорява многократно технологичния процес на работа в упражнението – напр. предава­телна характеристика от 200 точ­ки с Микролаб се снема за части от секунда­та, докато по „ръчния“ начин това става за цели минути. 

Микролаб е пуснат в употреба първоначално за упражненията по изчислителна техника, но може да използва и в други дисциплини, защото има общо предназначение. Как изглежда цялостната система, виждаме на първата снимка в статията, най-горе. А на фигурата отдолу схематично са показани и номерирани различните му блокове: 8-битов персонален компю­тър Правец (напр. 8М, означен тук с цифрата 1), към който са включени външно флопидисково устройство от завод ,,Коцо Цветаров“ (2) и принтер (3), контролер (4), лентов съединителен кабел (5) и ключовата част – лабораторен макет (6) – това е онова, зеленото по-горе, дето прилича на футболно игрище. :D

Микролаб – компютърна образователна система

Всъщност макетът съдържа постоянна универсална аналогово-цифрова периферия (7) и сменяема изследвана плат­ка 8. Връзката между тях се осъществява външно чрез ко­мутационните кабелчета 9 и вътрешно чрез лентов кабел. Ла­бораторният макет (постоянната и сменяемата част) се захранва от компютъра с постоянно стабилизирано напрежение 15 волта. Размерите на ,,игрището“са 486 х 367 х 32 мм.

Микролаб има и екранче, на което се отразяват резултатите от изследването:

Микролаб – компютърна образователна система

Екранът има декоративна рамка, която ограничава полезната му част. В нея се разполагат графичните изображения на сигналите (2), вертикалният мар­кер 3 и курсорът 4. Деления­та 5 служат за грубо отчитане на стойностите, а полета­та 6, 7 и 8 — за точно. Маркерът 9 означава канала, подлежащ на обработка. 

Ето и още малко технически характеристики на системата. Микролаб има 4 аналогови входа. Може да се включи напрежение 10 волта и входно съпротивление 1 мегаом. Максималната честота на дискретизация е 2 килохерца. Аналоговите изходи са отново 4. Изходното напрежение е пак 10 волта, а изходното съпротивление – < 1 ом. Максималната честота тук е 10 килохерца, а формата на изходящия сигнал може да е всякаква – произволна. Използва TTL-интегрални схеми. Дуракоустойчив е – има защита от къси съединения.

Микролаб има няколко възможности, в които работи. Те му дават доста сили да ни помага, докато учим. Ето ги кои са:

  • Конфигуриране на системата. Тук се задават номерата на аналоговите входове и из­ходи, които ще се ползват, честотата на дискретизация, форматът на аналогово-цифро­вото и цифрово-аналоговото пре­образуване и др.
  • Измерване на входни анало­гови сигнали. При този режим последовател­но се сканират зададените ана­логови входове със съответната честота на дискретизация (точ­ната й стойност се изобразява върху полето, означено със 7 на горната  илюстрация. Полу­чените чрез аналогово-цифрово преобразуване отчети се записват в съответните входни буфери и се изобразяват върху екрана, ка­то именно така образуват графичните изобра­жения, означени с 2.
  • Генериране на изходни ана­логови сигнали. Този режим е обратен на режи­ма „измерване на входни анало­гови сигнали“. Състои се от две части:

а) задаване на формата на гене­рираните изходни аналогови сигнали. Това може да става аналитично, графич­но, таблично, чрез измерване или чрез прочитане на дискета;

б) същинско генериране на сигналите. Състои се от последователно прочитане на предварително за­писаните в буферите отчети и преобразуването им от цифров в аналогов вид.

  • Снемане на предавателните ха­рактеристики. Този режим представлява по­следователно редуване на режи­мите „генериране“ и „измерва­не“. Предвидена е възможност за изобразяване на сигналите със и без предварително изтриване на екрана. Този случай е под­ходящ за получаване на семей­ство предавателни характери­стики.
  • Графичен редактор. Дава следните възможности за обработка на измерените и за­помнени в буферите сигнали:

а) преместване на изображенията във вертикална посока с пред­варително зададена стъпка;

б) също – преместване в хоризонтална посока;

в) мащабиране на изображе­нията, за да ги виждме възможно най-добре. Ето как изглежда екранът на Микролаб в момент на извършване на лабораторни упражнение:

Микролаб – компютърна образователна система
  • Текстов редактор – да, и това има! Позволява да се правят над­писи върху графиките (напри­мер означаване на координатните оси, маркиране на характерни точки по тях и др.).
  • Цифрова обработка на полу­чените резултати. Тук се включват интегриране, диференциране, интерполиране, спектрален анализ, филтрация, отлепяне на обвивката на сиг­налите.
  • Отчитане на моментна стой­ност на сигналите. Осъществява се с помощта на вертикалния маркер 3 (пак според схемата на третата ни илюстрация),  който може да се премества в хо­ризонтална посока. Ординатите на пресечните точки на маркера с графичните изображения (2) на сигналите се изобразяват като петцифрени десетични числа със знак върху четирите полета, означени с 8. Стойността на абсцисата (положението на маркера) се изобразява върху по­лето 6, а честотата на дискрети­зация на входните сигнали — върху полето 7.
  • Обслужване на файлове: а) каталог на файловете; б) записване на получените ре­зултати във вид на файл върху флопидисковото устройство;в) четене на файл с предвари­телно получени или синтезирани сигнали и зареждането им в буферите на системата.
  • Отпечатване на резултатите чрез принтер:
  • а) визуализиране върху екра­на и отпечатване върху принтера на отделен файл; б) отпечатване на всички на­трупани резултати от лабора­торното упражнение във вид на протокол. Тази възможност изисква да въведем допълнителна информация — номер на лабора­торното упражнение, име на ученика/студента, група (клас), дата и т. н. Заедно с информацията от дискетата тя се отпечатва в протокола. 

Микролаб може да работи в два режима – директен и програмен. В директния отделните възможности се избират чрез удобна система от менюта и се изпълняват веднага.Програмният режим изисква предварително написване на програма на БЕЙСИК, в която чрез отделни команди да зазадем по­редица от необходими действия. Този режим обаче разкрива по-пълноценно възможностите на системата, защото позволява лесно да се направят уроци за програмирано обучение, разни демонстрационни програми и др.

Ето и какви са предимствата, които системата Микролаб е донесла при упражненията, в които се използва:

  • Гъвкавост и универсалност. Могат да се изследват аналого­ви, цифрови и хибридни елемен­ти и схеми от всички области на електрюониката (ако сменяемата платка съдържа подходящи преобразуватели, мо­гат да се изследват и неелектрични обекти). Чрез разработва­не на разнообразни програмни продукти могат да се провеждат различни експерименти върху един и същ обект;
  • Пълна или частична автома­тизация на упражнението. В ре­зултат на това рязко се повиша­ва ефективността — в рамките на едно лабораторно упражнение студентите/учениците получават много повече информация за изследва­ния обект;
  • Графично изобразяване, за­помняне и отпечатване на резул­татите от лабораторното упражнение чрез принтер – графичното представяне спомага да се онагледи добре процесът и да се запомнят добре изводите. Ето и още един екран от работата на системата:
Микролаб – компютърна образователна система
  • Възможност за програмира­но обучение (преподаване на материал, задаване на въпроси) по време на лабораторното упражнение. При това управляващият Микролаб компютър получава информация за под­готовката на упражняващите се не само от клавиатурата, но и от състоя­нието на изследваната схема. Така се разкриват интересни възмож­ности за създаване на „инте­лигентни“ уроци за програмира­но обучение;
  • Възможност за допълнител­на обработка на получените ре­зултати чрез пакет приложни програми с математически и гра­фични възможности;
  • Премахва се необходимостта от използване на традиционна измервателна апаратура (генератори, осцило­скопи, волтметри и т. н.) и от захранващи токоизточници. Друг е обаче въпросът, че всеки седен техник и инженер ТРЯБВА да може да работи правилно и уверено с тази уреди!
  • Възможност за включване към произволни персонални ком­пютри (чрез нужните  кон­тролери);
  • Допълнително разширяване на възможностите на системата чрез монтиране на допълнителни устройства върху сменяемата платка. Според изискванията на изследвания обект това могат да бъдат програмируеми усилвате­ли, схеми „следене — запомняне“, преобразователи на неелектрически в електрически величини, цифрово управляеми генератори и др.;
  • Няколко системи Микролаб заедно с един управляващ ги компютър могат да се включат в мрежа с широки възможности за центра­лизирано обучение и контрол.

Без съмнение системата, която разгледахме днес, е една интересна, непозната част от българската електронна промишленост. Въобще навремето в университетите са проектирани и произвеждани множество устройства, повишаващи ефективността на образованието. Едно такова е ето този компютър:

Български учебен ЕДНОПЛАТКОВ компютър ЕМК-14 от 1980-те г. + схема

 

 

Много рядък Правец 8Е с цифров клавишен блок от 1985 г.

В Sandacite.BG открихме рядък Правец 8Е, който е по-различен от обичайния.

Компютър Правец 8Е

Сигурно сте чували за интересния компютър, известен Правец 8Е. Не знаем откъде идва буквата Е при него. Това е странен модел, който не е конструиран в България, а е внесен от Тайван. Въсщност това са произведени в Тайван 8-битови компютри, съвместими с Apple, които са пуснати най-вероятно от тайванската фирма Orange. За разлика от нашите Правеци, тези техни машини са 99-процентово копие на известния Apple ][e.

След като компютрите са внесени в България, остава загадка защо не са хардуерно кирилизирани. Нашата хипотеза за това е, че те са внесени с цял да бъдат препродадени в чужбина, тоест реекспортирани. Иначе няма логика за вътрешните нужди на България държавата да внася от майната си компютри, които не са хардуерно кирилизирани, а на клавиатурата им също няма кирилица:

Компютър Правец 8Е

И наистина, моделът Правец 8Е има само 7-битова кодова таблица, което усложнява нещата.

Заради всичко това много от задачите, за които обикновените български Правеци дотогава се използват у нас, бяха се изпълнявали много трудно. Затова мислим, че Правец 8Е е продаван в чужбина. По това време – става дума за 1985 г. – България вече отдавна произвежда голям брой отлично кирилизирани 8- и 16-битови компютри – главно Правец`82 и Правец 16. Също така, Правеците 8Е са много малък брой, явно огромната част още тогава са заминали за износ – най-вероятно някъде, където страната купувач плаща с валута, защото притокът на западна валута е важен за икономиката на България преди 1990 г. и са правели всичко, за да изнасят повече стоки, заплащани по този начин.

От Правец 8Е също има две модификации. Едната е с клавиатура без цифров блок отдясно, другата със. Втората е още по-рядка и докато не бяхме намерили днешния ни експонат, въобще не знаехме за нея. Но не щеш ли, през м. март попаднахме именно на него и сега стигнахме и до тази публикация. Допълнителният блок клавиши добавя отделни цифрови такива:

Компютър Правец 8Е

В Комбината за микропроцесорна техника на тези компютри е лепнат стикер само ,,Правец 8″, без Е – и както казахме горе, дори не знаем откъде е започнало добавянето на буквата. На всяко от 8Е-тата е присвоен фабричен номер и обикаля един мит, че внесените от Тайван бъдещи Правеци са били само 1000 броя. Той обаче лесно се опровергава от един поглед върху стикера на нашия Правец, където е посочен заводски № 1269 – тоест повече от 1000!

Компютър Правец 8Е

Заповядайте един общ изглед към дънната платка на този рядък български компютър:

Компютър Правец 8Е

Колкото и да е тайвански този Правец обаче, явно все пак нашият завод е доокомплектовал някои елементи по дънната платка напр. Вътре забелязахме българския входно-изходен контролер СМ 632Р, а има и съветски чипове.

Компютър Правец 8Е

В Правец са добавяли и външното ,,дебело“ 5,25-инчово пловдивско флопи, т.е. придавали са крайния вид на компютъра за продажба.

Иначе процесорът на Правец 8Е е обичайният Synertek 6502 с тактова честота 1 мхц. Оперативната памет от стандартните 64 кб може да бъде разширена с допълнителна карта памет (поддържат се най-много 1080 кб), като тя се слага в специален разширителен слот на дънната платка.

Друга възможност за ъпгрейд е да поставите 80-колонна видеокарта за удвояване резолюцията на монитора – ето като ТАЗИ. За това обаче ще трябва и оперативната памет да е разширена до 128 килобайта! Така възможните резолюции стават следните:

  • в текстов режим 40 х 24 (или 80 х 48, както говорихме);
  • режим ниска графика GR 40 x 48 или 80 x 48 (пак при наличие на 128 кб памет);
  • режим на висока графика 280 x 192 или 560 x 192 (при наличие на 128 кб памет).

ROM-паметта пък е 16 кб.

По-горе споменахме и за 5,25-инчовото флопи. То остава единствената външна памет за 8Е (е, може да се добави още 1 брой), защото иначе вградената в Apple ][e поддръжка на касетофон е изключена.

Операционните системи на Правец 8Е са обичайно очакваните ДОС 3.1, ДОС 3.2, ДОС 3.3 и ПроДОС.

Ето и задния панел. Мониторът се включва чрез интерфейса DB9:

Компютър Правец 8Е

Този Правец 8Е ни показва нещо важно. Ясно виждаме, че по времето, когато България е проектирала и произвеждала разнообразна гама какви ли не компютри и периферия за тях, в Тайван са изработвани обикновени, нетворчески, 1:1 копия на известни американски машини. Да, обаче тази страна (а също и Сингапур) тръгнаха оттам, за да се превърнат по-късно в добре известните ни ,,азиатски тигри“, родина на известните хардуерни производители Asus и Gigabyte! А какво стана с нас, къде останахме ние? Една пета от тяхното да произвеждаше сега България, щеше да бъде една силна в хардуера страна…

А в колекцията имаме и друг – дори по-рядък от днешния – български 8-битов компютър. Става дума за ето този:

Стар и рядък български компютър от 1983 г. – МКС 64!

ИЗОТ 1008С Бензин – нов проблемно-ориентиран комплекс!

Sandacite.BG представя на вниманието ви т.н. проблемно-ориентиран комплекс ИЗОТ 1008С.

Проблемно-ориентиран комплекс ИЗОТ 1008С Бензин

Преди няколко дни ви качихме СТАТИЯ за едни специални компютърни системи, произвеждани в България от 1978 – 9 г. нататък, наречени проблемно-ориентирани комплекси. В нея споменахме един от тях, наречен Бензин, и обещахме да разкажем повече за него. Дайте сега да видим.

Той датира от около 1980 г. и е предназнаен да работи в популярните преди 1990 г. в България авторемонтни станции, където се занимава с електронизация и автоматизиране на зареждането с гориво и сервизното обслужване на  камионите и леките коли, изполозвани в държавните автомобилни предприятия (ДАП) и др. Напр. ИЗОТ-ът води точна отчетност за това колко гориво и масло е изразходвано за зареждане – тази информация се записва на магнитна лента чрез включено в комплекса устройство работа с такъв носител – ИЗОТ СМ5300.01.

В паметта на 1008С може да се въведат характеристиките на различни гориво-смазочни материали – също може да запомни най-много 16. Комплексът може да се свърже чрез телефонен модем с голяма (ЕС) или малка (СМ) електронноизчислителна машина и така, докато работи, могат да го ползват и като обикновен отдалечен терминал в голяма компютърна мрежа.

Ето и от какво се състои Бензинът:

  • управляващ блок с главна част – български процесор от серията СМ 600;
  • клавиатура с две групи клавиши: буквено-цифрова и такава с функционални – за задействане на различни възможности;
  • индикация – вероятно LED букви и цифри – и такава с функционални светодиоди;
  • малко принтерче за печатане на касови бележки, подобно на онези в касовите апарати Елка;
  • споменатото запаметяващо устройство на магнитна лента ИЗОТ СМ5300.01;
  • четец за магнитни идентификационни карти – такава се използва, когато оторизираните шофьори трябва да ,,отключат“ ИЗОТ-а, за да си свършат работата. Иначе без да му ,,покажете“ карта, не можете да работите с него – това се прави, за да няма злоупотреби (вижте по-долу);
  • блок автоматика;
  • комплект датчици.

Проблемно-ориентираният комплекс Бензин може да обслужва едновременно до 8 бензоколонки, но те могат да се разширят и до 16. Когато от някоя от тях се извършва зареждане, тя е свързана с ИЗОТ 1008С и така той в реално време регистрира колко гориво и смазочен материал е изразходвано. Пригоден е за работа на няколко смени -в края на всяка смяна може да му се зададе да направи баланс не само колко литра бензин/нафта/масло е изразходвано, ами и от кой вид материал по колко и освен това да го запише на магнитна лента!

ИЗОТ 1008С следи и за определените от държавата лимити на горивото – ако сте го надвишили, няма да можете да заредите камиона, дори и да имате идентификационна карта! Всеки камион или лека кола притежава единен код на шофьора, отделно друг на самото МПС и най-сетне на предприятието/службата, към която е зачислено. Именно те са записани на магнитната карта. Когато я поставите в четеца, те се прочитат автоматично, но можете и да ги въведете ръчно с клавиатурата.

Апаратът има и 21 кб памет, в която информацията може да се съхрани до осем часа след изключване на напрежението. Иначе оперативната му памет е 4 кб. Подсистемата за работа с магнитни идентификационни карти има отделни памети – оперативна 250 байта и постоянна 4 кб – в които запомня данните от картите.

Софтуерът му се състои от специализиран алгоритичен език, който, както и онези на повечето ПОК-ове, е написан специално за най-удобно даване на команди на тази група от устройства.

Всичките устройства в състава на ПОК Бензин има механически триещи се части, но докато работят, все пак не са чак толкова шумни – най-много 75 децибела.

Знаем, че бюрокомпютрите са тежки. Събрани с други устройства, е нормално да тежат почти повече, и при този е точно така – 300 килограма! А размерите на групата, събрана заедно, са:

  • главен изчислителен блок – 950 х 770 х 680 мм;
  • лентовото устройство – 950 х 770 х 430;
  • блокът с автоматиката – 430 х 175 х 180.

Иначе работи при обикновеното 220 волта мрежово напрежение и потребява около 550 вата мощност.

Този ПОК е широко изнасян в чужбина от външнотърговската организация Изотимпекс. Ама де да намерим и у нас някоя голяма стара автостанция, ама неразбивана, и вътре да ни чака някой такъв Бензин?! Тц – няма такъв господ…

А тук тук ви показваме и какви са били българските автосервизи преди около половин век:

Вижте най-добрите български автосервизи през 1965 г.

 

Чисто нова 80-колонна видеокарта за Правец 8!

Sandacite.BG намерихме нова-новеничка 80-колонна видеокарта за Правец 8!

80-колонна видеокарта за Правец 8

Привет! Днес пак ще се занимаем само с конкретна платка, а не с цял компютър. Причината – ето това на снимката. Тази видеокарта ще направи резолюцията на Вашия монитор за Правец 8 двойно по-висока и когато влезете в текстов режим, той вече ще може да изобразява текст на 80 колони, вместо 40.

Дойде при нас в заводската кутия, никога неупотребявана! Тя е един от двата вида използвани от Комбината в Правец през този период. Те са съвсем типови – вижда се в долния десен ъгъл как е написано ,,Модул…“ и след това многоточие ръкописно да се добави какъв е. Унифицирана работа…

Я да се занимаем сега по-подробно с картата. Отваряте значи компютъра чрез двата чопа отляво и отдясно, вдигате капака и получавате достъп до слотовете. Сега трябва да я монтирате. Забучвате я, без да правите глупости – има само един правилен начин. Сега свържете единичната жица, която излиза от видеокартата, към конектора ,,видеоизход“ на компютъра. После свържете буксата на коаксиалния кабел към конектора ,,видеоизход“ на задния панел на монитора. За да завършите, проврете коаксиалния кабел през някой от прорезите на задния панел на компютъра и накрая затворете капака.

Когато включите Правеца, ще трябва да задействате пълната функционалност на картата. Изберете я, като въведете PR#3. Натиснете бутона Return и ще видите как символа на БЕЙСИК /J/ се заменя със знака /}/. Това означава, че успешно сте задействали новата 80-колонна видеокарта.

Впрочем ето я по-отблизо. Чиповете, вкл. видеопроцесорът, са на Mitsubishi, но има и някои български (с емблемата на Комбината по микроелектроника в Ботевград), че и съветски:

80-колонна видеокарта за Правец 8

Ако стигнете дотам Вашата нова видеокарта даже да проработи, ще забележите, че при първоначално включване азбуката на писане е латиница. Трябва да я превключите. Превключването на големи и малки букви, съответно с регистъра, в който са цифрите и препинателните знаци, се управлява с клавишите ЛАТ (бял) и Shift и Lock Shift (жълт). Ето как превключваме двата регистъра:

  • MK-Z1 – превключна към стандартната резолюция 40 колони, 25 реда;
  • MK-Z2 – включва стандартния знаков генератор (латиницата);
  • MK-N – прави същото;
  • MK-Z3 – включва другия знаков генератор – тоест кирилицата;
  • MK-O – прави същото;
  • MK-Z, MK-@ до MK-Z, MK-G – изобразява на екрана наподобяващи графични символи;
  • MK-A – еквивалентно на действието на клавиша Lock Shift;
  • MK-G – оттук включвате високоговорителчето… така де, благоевградската пищялка, вградена в кутията. Ето тук можете да прочетете повече за тях – ГОВОРИТЕЛЧЕТА;
  • MK-H – връща курсора една позиция назад, без да променя записания символ;
  • MK-J – прави нов ред без връщане в началото му;
  • MK-K – изчиства съдържанието на екрана от текущата позиция до края на последния ред;
  • MK-L – изчиства целия екран и поставя курсора в неговия горен люв ъгъл;
  • MK-M – действие, същото като на Return;
  • MK-S – временно спира работата на оператора LIST, докато повторно се избере MK-S и до натискане на произволен клавиш;
  • MK-U – придвижва курсора една позиция напред, като същевременно знакът, който е бил на старата позиция на курсора, се записва в буферната памет на компютъра.

Действието на клавиша ЛАТ остава същото като при работа с обикновена видеокарта.

Ето още малко информация за съвместимостта на 80-колонната видеокарта с целочислен и разширен БЕЙСИК:

80-колонна видеокарта за Правец 8

Без съмнение една запомняща се придобивка в нашата колекция! Вие имате ли си такава? :D

А ето и една професионална правешка видеокарта:

Българска професионална видеокарта за компютри Правец!

Разширителна карта CP/M за компютри Правец 8

Разгледайте оригинална разширителна карта CP/M за 8-битови компютри Правец в Sandacite.BG.

CP/M-разширителна карта за компютри Правец 8

Днес ни попадна една любопитна платка – т.н. CP/M-модул. Това е разширителна карта, която напомня платките, които бяха актуални преди двадесетина години, когато се появи процесорният цокъл 370. Тогава новите процесори на Интел за него се монтираха в подобна платка, кото пък се слагаше в т.н. слот 1 на широко употребяваните дънни платки. Слот 1 беше масово разпространеният тогава хардуерен стандарт за връзка между процесора и дънната платка на компютъра.

Това тук действа на подобен принцип, но все пак не е същото. То не ъпгрейдва процесора, но прави позволява на машината да работи с два различни процесора, за да имате избор! CP/M-платката съдържа в себе си процесор Zilog Z80A и се забучва в разширителен слот на дънната платка на 8-битов Правец (по-точно някой между първия и петия слотове, броено от ляво надясно). По този начин компютърът ще може да работи с два вида процесори – 6502 и Zilog-а. С процесор 6502 е произвеждан напр. моделът Правец 8С.

Нуждата Правецът да може да работи с различния процесор Zilog Z80A може да се яви, ако имате наличен софтуер за неговата операционна система – CP/M80, версия 2.2 – и искате да го използвате. Поначало тази операционна система през 80-те години е много популярна във фирмените компютри в САЩ. За нея има много фирмен, професионален софтуер и такъв разширителен модул е направен, за да може да се използва CP/M80 с програмите за нея. Когато инсталирате модула, можете да превключвате двата процесора. Ако искате да използвате новата платка, просто написвате PR-номера (индивидуалния номер) на слота и активирате разширителната карта и процесора на нея.

Вместо този Zilog на платката може да е инсталиран и източногерманският му клонинг U880. За да може да направите фокуса, компът трябва да има РАМ поне 48 кб, колкото Правеците всъщност имат. За тези процесори асемблерните езици се наричат Z80 и I8080, а ако се работи със Z80, операционната система е CP/M80, версия 2.2.

CP/M-разширителна карта за компютри Правец 8

На горната снимка добре виждаме цялото изделие. По него има и японски (на Mitsubishi), и съветски чипове. Интересно е да отбележим, че тази платка идва при нас съвсем нова-новеничка, дори не е използвана – при нас пристигна в оригиналното найлонче. Произведена е в Комбината по микропроцесорна техника, даже още си има стикера на ОТК-то.

На платката има и светодиод, който светва, когато сме инсталирали успешно платката и тя заработи. При монтиране страната елементи на платката трябва да бъде обърната надясно, освен това преди да забучите разширението, задължително изключете компютъра, вкл. и от контакта!

Честито! Сега вече можете да се наслаждавате на Вашия ускорен и усилен Правец 8!

Вижте и още едно интересно разширение, тоз и път за 8Д, тук ==>

Как да ъпгрейднем Правец 8Д с флопи, разширителни карти и ДОС

 

Български феритни памети от 1974 г.

За пръв път в Sandacite.BG намираме български феритни памети!

Български феритни памети от ИЗОТ 0310

Феритните памети са исторически вид енергонезависими компютърни памети. Те появяват през средата на 50-те години и се използват до края на 80-те.

При тях данните за записват, като се намагнитват малки феритни тороиди. Като погледнете отгоре, виждате четири правоъгълника – това е матрицата, върху която се монтират феритните ядра.  Когато се променя състоянието на намагнитеност на ядрото, това изразява кодиране на информационни битове като нула или единица. Всеки тороид е свързан с два или четири проводника според схемата на паметта.

Когато през проводника премине електрически ток, той създава магнитно поле. Чрез пропускане на ток в определена посока се управлява индуцирания магнитен поток в едната или противоположната посока (по посока на часовниковата стрелка или обратно на нея) и едната се приема за логическа 1, а другата за логическа 0.

Ядрата са с форма на тороиди, защото така линията на магнитните силови линии е затворена и нищо не излиза навън. Между другото, интересно е да отбележим, че най-малката сила на тока, достатъчна, за да се промени намагнитеността, е различна според температурата.

Ето напр. как се чете от феритни памети. По електрическата верига се подава импулс, който да промени стойността на бита в нула.

Стойността на бита се разбира, когато се измери токът на проводника за четене: ако намагнитването на тороида се е променило, то в него възниква индукционен ток. И тогава:

  • ако битът е бил „0“, няма промяна;
  • ако битът е бил „1“, намагнитеността се обръща. След малко време това се отчита от проводника за четене S. Времето, необходимо за този процес, ва английската терминология се нарича access time.

Тъй като след всяко четене битът става 0, процесът разрушава съхранената информация и след прочитането на бита той трябва да се възстанови.

А ето и как записваме. При процес на запис се приема, че преди това е имало четене и битът е в състояние 0:ц

  • за запис на „1“ се възбуждат избраните X и Y, но с токов импулс в обратна посока на този при четене. Намагнитеността се обръща в пресечната точка;
  • за запис на „0“ (с други думи да се предотврати запис на „1“) се подава и ток за забрана по Z. Това намалява сумата от токове през тороида, която вече не е достатъчна, за да промени посоката на намагнитеност и тя остава същата.

Тези памети се използват масово в компютрите от споменатите десетилетия, обаче са трудни, съответно скъпи за производство, и имат сложна захранваща схема. Затова след изобретяването на DRAM от Интел феритните памети започват да изчезват от масовите компютри. Продължават обаче да се употребяват в компютри за приложение във военното дело и космическите проучвания (напр. в совалките), защото не се увреждат от радиация и мощни електромагнитни импулси.

А поводът да направим тази статия е фактът, че вчера неочаквано се сдобихме с български феритни памети! Тези, които виждате на снимката в началото на статията, са действали в известния наш компютър ИЗОТ 0310 от 1974 г. – онзи, за който Тодор Живков казва, когато го вижда на Пловдивския панаир: ,,Ето такава изчислителна техника ни трябва, какво ми говорите за големи машини!“:

Български компютър ИЗОТ 0310

На снимката горе виждате откъде влиза в платката проводникът за четене S (Sense), а и останалите.

Производството на българските феритни памети започва в Завода за запаметяващи устройства във Велико Търново и такива са монтирани във втория български компютър ЗИТ-151 от 1967 г. Не знаем колко е капацитетът на тези, но поначало 1 кб е нещо нормално за един елемент от онази епоха. За да постигнете необходимо за нормална работа количество памет, е необходимо за наредите в компютъра доста такива.

Ето и снимка откъм страната спойки:

Български феритни памети от ИЗОТ 0310

М001 вероятно означава ,,модул 001″ в смисъл на модул памет.

Всяка една част от този вид стари български компютри и невероятно ценна, а още повече пък наша феритна памет! Затова посветихме отделна статия на тази находка.

А тук можете да видите информация и за един още по-стар вид компютърна памет:

Перфокартите за компютри и как да ги съхраняваме

 

Exit mobile version