Статии – Стара техника

Телевизионен ретранслатор ТРС5-Д

Телевизионен ретранслатор е уред за приемане, преобразуване и препредаване телевизионен сигнал… а ние от Сандъците – Sandacite ей сега ще Ви разкажем за един български такъв!

Телевизионен ретранслатор ТРС5-Д

Телевизионният ретранслатор ТРС5-Д  е разработка на Научноизследователския институт по съобщенията от 1966 г. и след усвояването му в масово производство става един от основните видове ретранслатори в България. По важните параметри на този лампов телевизионен ретранслатор са следните:

а)   изходна мощност 5 W, измерена с товарно съпротивление 75 ома и входен сигнал от немодулиран сигналгенератор;

б)   чувствителност — 8 kT0;

в)   АРУ — при изменение на входния сигнал с + 6dB измененията на изхода, по-малки от +/- 1 dB;

г)   честотна характеристика — неравномерност от —0,75 до + 6,75 MHz +/- 1 dB; за честоти, по-ниски от —4,5 MHz и по-високи от + 10,5 MHz, затихване, по-голямо от —20 dB;

д)   входен и изходен импеданс —75 ома;

е)    температурен режим — от —30 до +40°С;

ж)  допустими изменения на мрежовото напрежение — 220 V — 20 % до +15  %> 50 +/- 1 Hz;

з)    пускане и спиране — автоматично в зависимост от захранва­щата програма;

и)    консумирана мощност — 130 W.

На долната фигура е показана блоковата схема на ретранслатора.

Телевизионен ретранслатор Televizionen retranslator

Ретранслаторът се включва и изключва автоматично от дежурния приемник. Възможно е ретрансла­торът да се остави постоянно включен, като за целта е предвиден съответният превключвател. Контролът за състоянието на радиолампите се извършва със собствения уред, който постоянно показва из­ходното ниво. Конструктивно ретранслаторът е осъществен на бло­кове, които лесно могат да се свалят за ремонт. Целият електрически монтаж е закрепен на подвижна рамка, която се отваря и позволява достъп до монтажа в процес на работа.

Поради факта, че телевизионният ретранслатор работи без обслужващ персонал, предвидено е затваряне на апаратурата в здрав метален шкаф и заключване със секретна брава.


Литература:

Сп. Съобщения, 9-1967

Лампов шум и защо се появява

Явлението лампов шум смущава съня на много фенове на ламповия звук. Днес в Сандъците – Sandacite анализираме защо се появява този проблем.

Лампов шум и защо се появява

Преди всичко е добре да направим уговорката, че ако от колоните на Вашия лампов усилвател се чува нещо като хартиено шумолене, средночестотно хърхорене и т.н., не е задължително това да е собственият лампов шум. Явлението може да е породено от други проблеми в усилвателя или от звуковия тракт.

Изследванията показват, че анодният ток на лампата не остава постоянен дори и при константно напрежение на управляващата решетка и на останалите електроди на лампата. Анодният ток се изменя непрекъснато по случаен закон, сякаш на входа на лам­пата се подава някакво случайно изменящо се напрежение. Това еквивалентно напрежение, което поражда случайно изменение на анодния ток, се нарича напрежение на собствените лампови шу­мове.

Най-често това напрежение е малко и не оказва влияние върху работата на лампата в случаите, когато усилваните сигнали са достатъчно големи, но при усилване на слаби сигнали то причи­нява значителни смущения и е причина за ограничаване на мини­малната амплитуда на усилваните сигнали. Особено силно е вли­янието на собствените шумове на лампите на първите стъпала на усилвателя.

Лампов шум Lampov shum

Различни са причините, на които се дължат ламповите шумове. Част от тях се причиняват от променливотоковото захранване на катодите с пряко отопление с променлив ток въз­никват нежелателни пулсации на анодния ток с честотата на ото­плителното напрежение и на неговите хармонични, вследствие на което се появява т. нар. фон на променливия ток.

Този фон може да се породи и поради недостатъчната конст­рукция на катодите с непряко отопление. Причини за фона при тези катоди могат да бъдат: недостатъчната изолация на катода, капацитивният ток между отоплителната жичка и катода, магнитно­то поле, създадено от променливия ток на отоплителната жичка и на индуктивното влияние на отоплителните изводи върху управ­ляващата решетка. Най-често разгледаният фон е незначителен в съвременните електронни лампи.

Друга причина за ламповите шумове, дължаща се също на конструкцията на лампата, са т. нар. микрофонни шумове (микрофонен ефект, микрофония), които се изразяват в пулсации на анодния ток на лампата при механични сътресения. Всеки вън­шен тласък причинява вибрации на управляващата решетка, като­да и останалите елементи на лампата. При това поради взаимно­то преместване на отделните елементи се изменят параметрите на лампата, а следователно и анодният ток.

Лампов шум Lampov shum

При слухово приемане полезните сигнали пулсациите на анодния ток, дължащи се на микрофонния шум, се проявяват в харак­терно звънтене, което понякога преминава в непрекъснато виене.

Този неприятен ефект на лампов шум се проявява при най-малко сътресение в приемниците и усилвателите, които имат голям коефициент на усилване. Понякога микрофонният ефект може да причини пораж­дане на звукови трептения поради акустическата (звуковата) об­ратна връзка. В тези случаи звуковата вълна от високоговорителя поражда механични вибрации на лампата, които поради микро- фонния ефект причиняват пулсации на анодния ток. След усилва­не тези вибрации попйдат във високоговорителя и отново разтре- лтяват неговата мембрана. По този начин се поддържат незатихващи трептения, които се чуват като непрекъснат тон, заглушаващ полезните сигнали. За отстраняване на микрофонния ефект се препоръчва ламповите цокли да се закрепят към шасито с гумени ::ли пружиниращи подложки и да се използват гъвкави монтаж­ни проводници.

Източник на лампов шум може да бъде и недостатъчната изолация на изводите на електродите и преди всичко недостатъчната изолация на цоклите и стъклените накрайници, в които са запоени изводите, а също така и йонните токове, дължащи се на несъвършения вакуум на лампите.

Лампов шум Lampov shum

Други лампови шумове се пораждат вследствие на изменящото се допълнително поле, което се създава от зарядите на разсеяни­те електрони, попаднали върху стъклените части и другите изо­латори.

Също така, в електронните лампи само част от емитираните от катода електрони попадат върху работните електроди, друга част се раз­сейват и в зависимост от моментните стойности на напреженията на електродите попадат на стените и изолаторите и след това бавно се отчитат от тях. Такова разсейване на електроните е осо­бено силно изразено, ако при удрянето на изолаторите от елек­троните може да възникне вторичноелектронна емисия и изола­торите могат да се заредят значително. За отстранение на тези заряди в съвременните лампи изолаторите на държателите имат специални металически екрани. За тази цел, ако лампата има стък­лен балон, неговата външна повърхност се покрива с металически слой и се заземява. По този начин се образува кондензатор меж­ду този слой и електродите, вследствие на което частично се на­малява влиянието на допълнителните полета, създадени от заре­дените изолаторни части на лампата.

Основният вид лампов шум, който фактически определя мини­малната амплитуда на усилвания сигнал от лампата, са т. нар. електрически флуктуации на електронния ток. Те са присъщи не само на електронните лампи, но и на другите елек­тронни и йонни прибори.

Лампов шум Lampov shum

Във физиката, флуктуации се наричат случайни колебания на една или друга величина около нейната средна стойност. На­пример, когато се говори за постоянен ток 1 mA, това означава, че през напречното сечение на проводника преминават средно около 6,3.1015 електрона в секунда. В отделни къси интервали броят на електроните в секунда може да бъде по-голям и по-малък от горепосочената средна стойност. Следователно налице е флуктуация на постоянния ток, т. е. върху постоянния ток в точния сми­съл иа думата е наложена случайна променлива съставяща.

Необходимо е да отбележим, че понятието стойност на тока губи своя смисъл при известни условия. Така например при ток 10-2о А през проводника преминава средно по-малко от един елек­трон в секунда; токът губи непрекъснатия характер и представ­лява преместване на отделни дискретни заряди.

Следователно понятието за постоянен електрически ток, както и за постоянно количество заряди, преминаващи за единица време през напречното сечение на проводника независимо от момента на наблюдение, трябва да се замести с представа за някаква средна стойност, допускаща във всеки момент от време някакви случайни изменения.

Лампов шум Lampov shum

При неголеми плътности на електронния поток и малка плътност на пространствения заряд на катода може да се приеме, че от­делните електрони се движат независимо един от друг и следо­вателно явлението флуктуация е обусловено изключително от флуктуациите на електронната емисия на катода (ту повече, ту по-малък брой излетели от катода електрони).

Напротив, движещите се в проводника електрони обменят енер­гия един с друг вследствие на голямата им плътност в провод­ник. Затова зависимостите, чрез които се изразяват флуктуациите на тока в проводника, се различават от зависимостите за флук­туациите на електронния поток във вакуума и следователно тряб­ва да се има пред вид разликата между тези два вида зависимости.

Флуктуациите на тока в проводника се наричат топлинен ефект, а флуктуациите на електронния поток във вакуума се наричат дробов ефект.

Именно флуктуациите на анодния ток на първата лампа при значително усилване се регистрира на изхода на усилвателя като характерен лампов шум, борбата с който е твърде трудна.

Един материал на Сандъците Sandacite.

Катод. Видове катоди в електронните лампи

Поздравления, попаднахте в Сандъците – Sandacite, където ще прочетете всичко за катода – важен елемент в електронните лампи.

Катод. Видове катоди в електронните лампи

В ТАЗИ публикация се запознахме с явлението електронна емисия, което всъщност прави възможна работата на радиолампите. За да се излъчат електрони от катода обаче, първоначално е необходимо той да бъде нагрят.

Точно по този признак катодите се разделят на два вида: катоди с пряко и непряко отопление.

Катоди с пряко отопление

При катодите с пряко отопление електроните се излъчват не­посредствено от отоплителната жичка, загрявана от протичащ през нея електрически ток. По форма те биват най-различни в зависимост от ламповата конструкция: праволинейни, Л-образни, М-образни
и др. (фиг. 2а), при което с различните форми се цели увеличаване на емитиращата повърхност (нормално!). По вид те могат да бъдат или от чист метал, или активирани, или окисни. Поради малката тем­пературна инертност на металната нишка при загряване на тези катоди с променлив ток се предизвиква пулсиращо излъчване на електрони (съгласно закона на Ричардсън) с честота, двойно по-голяма от честотата на променливия ток, който е нежелателно явление в лампите. По тази причина тези катоди се загряват само с постоянен ток от химически източник или подходящ изпра­вител.

Катоди с непряко отопление

Катодите с непряко отопление са пред­назначени за загряване с променлив ток. Принципното им устройство е показано на фиг. 2б. При тях емитиращата повърх­ност е отделена електрически от отоплител­ната жичка и представлява металически цилиндър, покрит с активен слой. Практи­чески изолацията се постига или чрез по­ставянето му върху керамична пръчка, през която по канали е прекарана отоплителната жичка, или чрез покриване на последната с топлоустойчив изолационен пласт от алу­миниеви окиси. При това отоплителната жичка може да има различни форми, както е показано на фигурата. Предвид голямата температурна инертност на изолационния слой температурата на емитиращата повърх­ност остава постоянна независимо от момент­ните изменения на силата на променливия отоплителен ток. Тези катоди се наричат още еквипотенщални катоди.

Схематичното изображение на катодите с директно и индиректно загряване е посочено на фиг. 2в.

Катод Katod

Но както се казва обикновено в рекламите – това не е всичко. За сравнение и оценка на ка­чествата на различните катоди са въведени следните параметри:

а)  Специфичната емисия на катода — представлява стойността на емисионния ток от 1 см2 от повърхността на катода. Тя зависи както от материала, така и от температурата му. Измерва се в mA/см2.

б)  Специфична отоплителна мощност на катода — представлява отоплителна мощност, която се пада на 1 см2 от повърхността му. Измерва се във W/см2.

в)  Ефективност на катода — представлява отношението между специфичната емисия и специфичната отоплителна мощност на катода и показва колко милиампера (mA) емисионен ток може да се получат от 1 W отоплителна мощност. Измерва се в mA/W.

г)  Дълготрайност на катода — представлява срокът за нормална експлоатация на катода, в който той не променя емисионните си качества извън допустимите граници, т. е. срокът, в който електрон­ната лампа е годна за използуване. Измерва се в работни часове.

Отделно пък, че в зависимост от материала, от който са направени, катодите на електронните лампи се делят на катоди от чисти метали, активирани катоди и окисни катоди.

Катод Katod

На горната снимка – устройство на лъчевия тетрод EL36. Катодът е продълговатото метално парче най-горе вляво.

Катоди от чисти метали

За изработване на катоди от чисти метали днес се използуват волфрамът и танталът, които имат сравнително висока температура на топене (волфрамът — 3370 °С, а танталът — 2850 °С) и могат да се обработват във вид на тънки жички или ленти. По-често се срещат волфрамовите катоди, тъй като танталът при високи температури става крехък и чуплив. Волфрамовите катоди се отличават със срав­нително ниска ефективност (2—6 ма/вт), но затова пък притежават други положителни качества. Те например са по-устойчиви на йонна бомбардировка, която се получава при високи анодни напрежения, а също при загряване на катода без анодно напрежение се подобрява вакуумът на лампата.

Активирани катоди

Устройството на активираните катоди почива на свойството на някои метали да увеличават многократно специфичната си емисия при покритие с тънък слой от друг метал. При това тези катоди работят при сравнително ниски температури на загряване, поради което имат голяма ефективност. Най-употребяваните днес активирани катоди са торираните и карбидираните катоди.

Окисни катоди

Поради добрите си качества окисните катоди са едни от най- употребяваните в електронни лампи от времето на разцвета на тази техника. Тяхната структура е значително по-сложна от тази на активираните катоди. За основен материал при тях се използва никел, върху който се нанасят по механичен път изходните продукти за окисно покритие — бариев и стронциев карбонат. Чрез външна термична обработка (високочестотно загряване) върху никеловия катод остава покритие от окисен слой, който служи за източник на електрони.

Чрез изпарение на специално вещество, наречено гетер, в балона се постига висок вакуум, като парите му поглъщат газовете в балона и се полепват по стъклото.

 

Един  материал на Сандъците Sandacite.

 

Видове микрофони

Днес в Сандъците – Sandacite разглеждаме различни видове микрофони.

Видове микрофони

1. Общи сведения за микрофоните

Микрофоните са електроакустични преобразуватели, които превръ­щат енергията на звука (акустичната енергия) в електрическа. Те спадат към групата на звукоприемниците.

При съвременните микрофони звуковите вълни оказват механично въздействие върху мембраната на микрофона и я принуждават да тре­пти. Трептенията на мембраната създават в електрическата верига на микрофона променливи токове или напрежения със същата честота, каквато са имали звуковите трептения.

Почти всички микрофони представляват пасивни електромеханични четириполюсници. Изключение е въгленовият микрофон. Той е активен електромеханичен четирчполюсник, който има усилвателно действие. В електроакустическата наука зависимостите във въгленовия микрофон се изразяват главно с нелинейни уравнения.

Както се досещаме, приложението на микрофоните е доста обширно. Те се използват в радиоразпръскването, звукозаписването и в много други специални области.

https://www.sandacite.bg/въгленови-микрофони-и-как-се-правят/amp/

2. Видове микрофони според принципа на действие

Според физическия принцип, на който е основано получаването на променливите токове (напрежения), или според начина на преобразу­ване на акустичната енергия в електрическа се различават следните видове микрофони:

а.  Въгленови или контактни. В тях се използва свойството на въгленовите зрънца да изменят контактното си съпротивление в за­висимост от променливото звуково налягане върху контактната повърх­ност.

Видове микрофони Vidove mikrofoni

б.  Електродинамични или индукционни. В тях се използува прин­ципът на електромагнитната индукция: действието на звуковите вълни предизвиква трептения на закрепения в магнитното поле проводник, при което в него се индуктира електродвижеща сила със звукова че­стота. Според формата на проводника се различават лентови микро­фони (трептене на проводник-лента в магнитно поле) и микрофони с подвижна бобинка (трептене на бобинка в магнитно поле).

Видове микрофони Vidove mikrofoni

в.  Електростатични или кондензаторни. В тези микрофони се из­ползват променливите токове, които се получават във веригата на зареден кондензатор, чийто капацитет се изменя при изменяне на раз­стоянието между плочите му под действието на звуковите вълни.

Видове микрофони Vidove mikrofoni

г.  Пиезоелектрически или кристални. Действието на тези мик­рофони се основава на директното използуване на пиезоелектрическия ефект, т. е. на създаването на електрическо напрежение при налягане, на звукови вълни върху пиезокристала.

Видове микрофони Vidove mikrofoni

Известни са и следните видове микрофони: електромагнитни, тер­мични, газови, капилярни, лазерни, магнитострикционни, фотоелектрически и електронномеханични.

3. Видове микрофони от акустично гледище

Според начина на приемане на звука, който характеризира естест­вото на силите, действуващи върху микрофона и определящи неговата пространствена (насочена) характеристика, микрофоните се разделят на следните три групи:

а.  Микрофони за налягане. При тези микрофони силата, която действа върху подвижната система на микрофона, е пропорционална на звуковото налягане (напр. едностранен въгленов микрофон).

б.  Микрофони за градиент на налягане. При тях силата, която действува върху трептящата система на микрофона, е пропорционална на градиента на звуковото налягане, т. е. на разликата на налаганията, които действуват от двете страни на мембраната. Тези микрофони се наричат още микрофони за скорост, тъй като електродвижещата им сила се определя от скоростта на трептене на мембраната (напр. лентов микрофон).

в.  Комбинирани микрофони. Те представляват комбинация от мик­рофон за налягане и микрофон за градиент на налягане.

Звуковата вълна се характеризира с периодични изменения на на­лягането и скоростта на трептенията на въздушните частици, които въздействат на микрофона. Получената от микрофона електрическа енергия съответствува на трептенията на средата. При микрофоните за налягане получената електродвижеща сила отговаря на измененията на налягането, а при микрофоните за скорост — на трептенията на ча­стиците на средата или на колебателната скорост.

Съгласно разгледаната електроакустическа аналогия микрофонът за налягане в акустичната система е аналогичен на волтметъра в елек­трическата верига, а микрофонът за скорост е аналогичен на амперме­търа.

4. Видове микрофони според други признаци

Всички микрофони се разделят на:

а. Микрофони-релета, в които електрическата енергия се полу­чава от страничен източник. Към тези микрофони спадат въгленовите и кондензаторните микрофони.

б. Микрофони-генератори, които непосредствено превръщат механичната енергия на звуковите трептения в електрическа. Към тези микрофони спадат електродинамичните и пиезоелектрическите ми­крофони.

5. В зависимост от мястото на резонансната честота в честотната характеристика, която определя тембъра на микрофона, с който той предава музиката и говора, видовете микрофони може да са три групи:

а. Микрофони, чиято резонансна честота се намира в началото на честотната характеристика. В трептящата система на тези микрофони преобладава масата. Микрофоните пре­дават много добре при ниските честоти и запазват тембъра на говора и музиката. Такъв микрофон е двустранният лентов микрофон, който предава говора и музиката с мек, приятен тон.

б. Микрофони, чиято резонансна честота се намира в горния край на честотната характеристика. Трептяща­та система на тези микрофони се управлява от еластичността. Тези микрофони предават много добре при високите честоти. Такива микро­фони са кондензаторните и клетъчните пиезоелектрически. Те предават говора и музиката с остър, рязък тон.

в. Микрофони, чиято резонансна честота се намира в обхвата на честотната характеристика. В механичната трептяща система преобладава активното съпротивление. Типичен микрофон от тази група е електродинамичният микрофон с трептяща бобинка. Честотната характеристика на тези микрофони има няколко резонансни върха. Микрофоните предават добре при високите честоти, но при високи звукови налягания не могат да възпроизвеждат добре преходните явления, поради което изкривяват тембъра на гласа и на музикалните инструменти.

Хексод, хептод, октод

Електронните лампи хексод, хептод и октод спадат към т.н. многорешетъчни лампи. Тя ще разгледаме сега в Сандъците – Sandacite.

Хексод, хептод, октод

Наскоро Ви представихме статия, в която разгледахме електронни лампи, които се на­ричат още прости лампови системи:

Видове електронни лампи

Лампите с повече от пет електрода се наричат сложни и се де­лят на многорешетъчни и комбинирани. Многорешетъчните лампи ос­вен функциите на простите лампови системи имат и други — специални, в светлината на които ще бъде разгледано тяхното устройство и дей­ствие. Докато комбинираните лампи, както е видно от името им, пред­ставляват комбинация от две и повече лампови системи с познато дей­ствие. По тези причини те ще се разгледат само информативно.

Познавайки свойствата им, лесно е да направим извода, че всяка следваща от тях може да изпълнява функ­циите на предната, но обратното не винаги е въз­можно.

Лампите с повече от пет електрода се наричат сложни и се де­лят на многорешетъчни и комбинирани. Многорешетъчните лампи ос­вен функциите на простите лампови системи имат и други — специални, в светлината на които ще бъде разгледано тяхното устройство и дей­ствие. Докато комбинираните лампи, както е видно от името им, пред­ставляват комбинация от две и повече лампови системи с познато дей­ствие. По тези причини те ще се разгледат само информативно.

ШЕСТЕЛЕКТРОДНА ЛАМПА (хексод)

Хексодът е най-простата многорешетъчна лампа. Нейното предназначение в електронните устройства е да из­върши смесване на две различни по честота напре­жения, в резултат на което да се получи трето, отличаващо се по честотата от първите две.

Поради това си действие хексодът спада към смесителните лампи.

Устройството на хексода е показано на фиг. 2. Видно е, че той има 6 електрода: катод, анод и 4 решетки. Ха­рактерно за него е, че двете от решетките му са управляващи, което дава възмож­ност за осъществяване на двойно управление на анодния ток. Другите две са заслоняващи и имат общ извод върху цокъла на лампата.

Хексод, хептод, октод Heksod, heptod, oktod

Наличието на две управляващи решетки в хексода определя не­говите две решетъчни характеристики Iа = f1 (U/P1) и Ia = f2 (Up) при

постоянни напрежения на другите електроди. Характерно за тези ха­рактеристики е, че стръмността на всяка от тях, означена съответно с S1 и S3 е в зависимост от другата и става по-голяма, колкото по­тенциалът на решетката, определяш другата характеристика, е по- малко отрицателен. От тази зависимост се определя така наречената константа на смесването (KС), която има измерение mA/V2 и показва с колко mA/V се изменя стръмността на едната характеристика, когато потенциалът на другата решетка се изменя с 1 V.

Нормално при хексода стръмността S1, определена от първата управляваща решетка, е по-голяма и затова при действие на хексода като смесител на нея се подава по-слабият сигнал (входният), а на р3 — сигналът на местния осцилатор (автогенератор), който е с по-големи амплитуди.

СЕДЕМЕЛЕКТРОДНА ЛАМПА (хептод)

Хептодът има същото предназначение както хексодът — да из­върши смесване на две напрежения с различни честоти.

Хептодът има седем електрода: катод, анод и пет решетки, по­ради което се нарича още пентагрид. Той се явява в две разновид­ности — хептод смесител и хептод преобразовател.

Хептодът смесител проилиза от хексода, на който е вградена още една решетка между анода и катода. Тази решетка както третата ре­шетка на пентода има предназначение да премахне динатронния ефект, който може да възникне в процеса на работата на смесителя, и се нарича също спираща или антидинатронна. Освен това тази решетка подобрява значително и параметрите на лампата, като увеличава въ­трешното й съпротивление и намалява проходните капацитети. Пред­назначението и устройството на останалите електроди са същите както на хексода. Устройството на хептода смесител е показано на фиг. 3, а.

Хексод, хептод, октод Heksod, heptod, oktod

Хептодът преобразовател има конструкция, различна от тази на смесителя (фиг. 3, б). Той е приспособен не само да извършва смесване на две честоти, но и да създаде едната от тях, т. е. той дей­ства и като автогенератор (осцилатор). За включване като авто- генератор се използува триодната му система (катод, р1 и р2), в която р2 играе роля на анод. Входният сигнал се подава на втората управля­ваща решетка (р4), а р3 и р5, които имат общ извод, са заслоняващи.

Действието на хептода се заключава в това. че създаденото в триодната система високочестотно напрежение е приложено върху р1 и чрез нея въздейства на общия емисионен ток на лампата. Посредством влия­нието и на входния сигнал, приложен върху р4, се осъществява двой­ното въздействие върху анодния ток.

ОСЕМЕЛЕКТРОДНА ЛАМПА (октод)

Хексод, хептод, октод Heksod, heptod, oktod

Октодът е преобразователна лампа с осем електрода: катод, анод и 6 решетки. Отличава се от хептода преобразувател по това, че има и антидинатронна решетка. Освен това по-късните октоди имат редица вътрешноконструктивни подобрения, които осигуряват пълна независимост на двете системи — входната и генераторната. Например при него р1 има подходящо закрепване в 4 точки, р2 е видоизменена като плочка или пръстен и др. Означението на октода е показано на фиг. 4, а и б.


Използвана литература:

Атанасов, Александър, и др. Учебник за радиолюбителя. София, Медицина и физкултура, 1962.

Илиев, Максим, и др. Слаботокови елементи. За IV и V курс на отдел „Слаби токове“ при техникумите по електротехника. София, Нар. просвета, 1953.

Топалов, Минко. Електронни лампи. Ч. 1. София, 1953.

Електронна емисия

Темата днес в Сандъците – Sandacite e електронната емисия.

Електронна емисия

Електронната емисия пред­ставлява излъчване на свободни електро­ни от повърхността на металите при определени ус­ловия. Действието на електронните лампи се основава именно на принципа на електронната емисия и на протичане на електрически ток във вакуум. Затова електронните лампи общо се наричат електровакуумни прибори.

Възможността за излъчване на такива електрони от металите се обуславя от тяхната структура. Както е известно, атомите на мета­лите в твърдо състояние са подредени правилно и образуват кристал­ната решетка на метала. Външните електрони на металните атоми са слабо свързани с ядрата, което позволява лесното им отделяне под формата на свободни електрони. При нормални условия свободните електрони се движат хаотично в междуатомното пространство на ме­тала. Практически те не напускат неговата повърхност, тъй като кинетичната им енергия не е достатъчна да преодолее притегателното действие на повърхностните положителни метални йони. За да се предизвика излъчване на тези електрони, необходимо е да им се при­даде допълнително енергия отвън, която да увеличи скоростта им, а с това и кинетичната им енергия. В зависимост от вида на прило­жената енергия електронната емисия бива:

а) Термоелектронна емисия — когато излъчването на електроните се предизвиква от загряването на метала.

б) Вторична електронна емисия — когато излъчването на елек­троните се предизвиква чрез избиване на същите от повърхността на метала при бомбардиране на последната с бързо движещи се електрони.

Електронна емисия Elektronna emisiya

в) Фотоелектронна емисия — когато излъчването на електроните се предизвиква чрез облъчване на металната повърхност с лъчиста енергия.

г)  Автоелектронна (студена) емисия — когато излитането на елек­троните се осъществява чрез поставяне на металната повърхност под действието на силно електрическо поле.

Класическите електронни лампи са устроени и действат по принципа на термоелектронната еми­сия. Те представляват система от електроди, поста­вени във вакуум, един от който има предназначение да излъчва електрони, за която цел същият се загрява посредством електрически ток до определена темпе­ратура. Този електрод се нарича термокатод или само катод. Ко­личеството на емитираните електрони или силата на емисионния ток е в зависи­мост от температурата на катода, която зависимост се изразява, както е посо­чено графически на фиг. 2.

Електронна емисия Elektronna emisiya

За изследване на тази зави­симост и построяване на графика й необходимо е излъчените електрони да се поставят под действието на ускоря­ващо електрическо поле. За целта на един от елек­тродите на електронната лампа се подава сравнително висок положителен потенциал, който насочва движението на излъчените електрони и предизвиква протичането на електрически ток от катода през ва­куума към този електрод. Във всички електронни лампи този електрод се нарича анод.

 

Мълниезащитни инсталации на 60 години

В Сандъците – Sandacite представяме видовете мълниезащитни инсталации преди половин век.

Мълниезащитни инсталации

Предназначение. Мълниезащитните (гръмоотводните) инсталации са предназначени да предпазват хората, сградите и електрическите уредби във и около тях от повреди или пожар вследствие на удари от мъл­ния. Те служат постепенно да изравняват потенциалната разлика между земята и наближаващ наелектризиран облак или околното ста­тично електричество, като отвеждат електрическите заряди безопасно- към земята. Падане на мълния върху дадена мълниезащитна инсталация показва, че инсталацията не е изправна.

Главни съставни части. Една мълниезащитна инсталация има след­ните главни части;

  • хващател (гръмоотвод), който се състои от стърчащи над сградата метални тела, плоскости и проводници, монтирани на най- опасните за удар от мълния места, напр. на покрив, по комини, на върха на кули и др.
  • отводни проводници, които свързват хващателите със заземителите и отвеждат електрическите пълнежи към земята:
  • заземители, които свързват гръмоотводната инсталация със земята.

Освен тези части за мълниезащитната инсталация са необходими още подпорни дюбели и скоби, предпазни стоманени тръби и съединителни части. За подобряване ефикасността на мълниезаитната инсталация външните метални части на сградата, а особено такива с широки до­пирни плоскости към земята трябва по възможност да се свържат помежду си и с гръмоотводната инсталация.

Видове гръмоотводи. Според устройството се различават следните видове гръмоотводи:

  1. Гръмоотвод на Франклин. Представлява стоманен прът със заострен връх, който се закрепва на билото на покрива и се свързва тоководно със земята. Този гръмоотвод служи за отвеждане на най- близките електрически пълнежи на околните въздушни пластове в земята. Предпазното му действие е слабо.
Мълниезащитни инсталации Malniezashtitni instalacii
  1. Гръмоотвод тип Фарадеев кафез. Състои се от няколко къси стоманени пръта, прикрепени по билото на сградата и съединени с ме­тални жици или ленти помежду си и към металните части на покрива. Тази обща метална мрежа се съединява тоководно към земята, заема до­ста голяма площ и затова такъв гръмоотвод е по-ефикасен от първия вид.
Мълниезащитни инсталации Malniezashtitni instalacii
  1. Радиоактивен гръмоотвод (фиг. 4) Той е най-ефикасен и технически най-издържан. Състои се от месингов прът, съединен и долния си край тоководно със земята, а на горния си край има пор­целанова полусфера. Полусферата е покрита отвътре с неразтворима дълготрайна радиева сол, а под нея има изолиран от пръта метален диск. Към диска тоководно са прикрепени три извити нагоре метални пръчки, които са покрити на върховете също с радиева сол. Чрез тези пръчки металният диск получава потенциала на околните въздушни пластове, който винаги е по-голям от този на свързания със земята метален прът. При повишаване на потенциалната разликата става бе опасно прехвърляне на електрическите заряди от металния диск през месинговия прът към земята. Радиоактивният гръмоотвод има най-силно предпазно действие, което стига до 500 — 600 м в радиус около сградата.
Мълниезащитни инсталации Malniezashtitni instalacii

Проект и монтиране на мълниезащитна инсталация. При изра­ботване на проект за мълниезащитна инсталация се използва планът на сградата с точните й размери, формата видът и металните части на покрива (особе­но изпъкналите части), главните подходящи места за заземители до и около сградата (водопровод, жп. релси, помпи и др.), север­ната посока и предназначението на сградата. Например за предпазване от мълнии на складове за бойна техника се увеличава броят на покривните проводници и заземителвте, които се полагат на известно разстояние и сградите. Гръмоотводите се поставят на 5 от покривните ъгли.

Броят и видът на хващателите, покривните проводници и използва­нето иа металните части от покрива зависят от формата и строителни те особености на последния. Тогава се установяват и местата на отводните проводници и заземителите, като се използуват всички метални части по и в сградата, включително и водопроводът. Така мълниезащитната инсталация, разклоненията й и всички метални части на сградата и около нея образуват обща метална мрежа от билото на сградата до земята.

Ha фиг. 5 е показан нагледен проект за мълниезащитна инсталация, където с 1 са означени хващателите, с 2— покривните проводници, с 3 — отводните проводници и с 4 — заземителите.

Мълниезащитни инсталации Malniezashtitni instalacii

При монтажа на мълниезащитната инсталация важат следните технически правила и норми за отделните съставни части.

Хващатели. Това са къси пръти от кръгла или че­твъртита плътна поцинкована стомана или тръба от същия материал, която е запушена горе, за да не влиза вода. Формата на върха е без шачение и не е необходимо да бъде от благороден метал. Хващатели са особено необходими за високи сгради и съоръжения (кули, камба­нарии, фабрични комини, антенни мачти и др.). Ако изпъкващите над сградата метални части имат достатъчно сечение, те също се използват за хващатели или се полага хващателна мрежа ог проводици. В такъв случай проводниците се прекарват по билото и ръбовете на покрива и стряхата. Ако покривът е с наклон над 25 °, проводниците по ръбовете на стряхата отпадат. При наклон под 35 разстоянието между хващателите трябва да е 15-20 м, което определя и броя им. Хващателите се прикрепят обикновено към комини или към билото на покрива и се съединяват с покривните проводници чрез малка плочка а основата на пръта или чрез съединителна муфа.

Покривни проводници. Полагат се на изложените на мълния северни места и служат и за хващатели. Ако билото на сградата е дълго над 20 м и по него се прокара проводник, той трябва да има разклонение към отводните проводници на всеки 15 — 20 м. Провод­ниците се прикрепват със стоманени подпорки на всеки 1—2 и са на 5— 10 см от покрива, а на билото — на 20 см. При меко покрити (слама, тръстика) покриви разстоянието от покрива се удвоява.

Отводни проводници. Те трябва да са най-малко два и во­дят от покрива към заземителите. Броят им се определя от покрив­ните проводници, които са прокарани наклонено от билото до стряхата. Разстоянието между отводните проводници трябва да е над 20 м. Те се полагат също към стоманени подпорки на 2 — 5 см от стените. Разстоянието между подпорните е около 1,5 м. За отводни про­водници се използват и водопроводни или водосточни тръби, ако ча­стите им са сигурно тоководно свързани. Тогава те се свързват към мълниезащитната инсталация. За предпазване от механични повреди от­ходните проводници се поставят на 2 — 2,5 м от земята в стоманени грьби, които влизат най-малко на 20—30 см в земята, а горният им край е свързан тоководно с проводниците. Съединенията се предпаз­ват от атмосферни влияния чрез намазване с миниум и безир или с асфалтов лак.

Отводните проводници са обикновено от медно въже с най-малко течение 25—50 мм2. Поцинковани стоманени проводници на­мират малко приложение, като се използват само стоманени въжета със сечение 50 — 100 мм2 и диаметър на отделните жици, не по-ма­лък от 3 мм. Отводните проводници трябва да са възможно най-къси, с най-малък брой съединения и добре свързани, за да има силен елек­трически и механичен контакт.

Мълниезащитни инсталации Malniezashtitni instalacii

Заземители. Те трябва да са най-малко два: главен и допълни­телен. Главните заземители са медни или поцинковани стоманени плочи, водопроводни или изворни тръби под нивото на подпочвената вода и др. Допълнителни заземители са забити в земята стоманени тръби, из­теглени ленти или проводници, съединения с жп. релси или със заземители на силнотокови инсталации с работно напрежение до 1 кв.

Дебелината на стоманените заземителни плочи е минимум 3 мм, и на медните — 1,5 мм. За заземителни проводници могат да се изпол­зват водопроводни тръби на сградата или до 10 м от нея. Съедине­нията в земята трябва да са сигурни (спойки или занитване) и се по­криват със защитно асфалтово покритие. Такова покритие на заземите­ли не се прави за избягване на лош контакт (голямо земно съпротив­ление). При високолежаща подпочвена вода се използват плочи или тръби, а при дълбоко ниво — заземителна мрежа от дълги и разклоне­ни проводници.

Особени случаи. Близки до сградите дървета представляват опас­ност и затова се отсичат или отводните проводници се поставят близо до тях, или дърветата се предпазват с гръмоотводна инсталация. От­водни проводници се полагат и близо до увода на електрически про­водници в сграда или до положени покрай нея такива. Ако въздушните електрически проводници към сградата имат заземен проводник, той и металните му подпори се свързват към гръмоотводната инсталация.

При проверка на мълниезащитна инсталация най-много се вни­мава за съединителните връзки и за земното съпротивление, което е над 1 ом. В неблагоприятни случаи се допуска 5 — 25 ом, като се внимава то да бъде по-малко от това на близкостоящи заземени иредмети.

Мълниезащитни инсталации трябва да имат сградите, които:

  • служат за многолюдни събрания — учебни заведения, болници, казарми, затвори, кина и театри, хотели, фабрики и заводи, учрежде­ния и др.;
  • служат за производство, обработка и складиране на леснозапали­ми или експлозивни материали — хартия, текстил, кибрит, бензин, ди­намит, барут и др.;
  • при разрушаване ще затруднят населението — електроцентрали, станции, трафопостове, водни резервоари за водопроводи и др. п.;
  • съдържат предмети с голяма научна, историческа или художест­вена стойност — музеи, библиотеки, изложбени сгради и др.;
  • поради местоположението си са изложени на опасност от мъл­ния— кули, фабрични комини, къщи по височини и пр.;
  • вече са ударени от мълния или близо до които често пада мълния.

Литература:

Андреев, Асен, Б. Костов. Наръчник за проектиране на вътрешни електрически инсталации. София, Наука и изкуство, 1956.

Петров, Ал., А. Василев. Електроинсталационно дело. София, Техника, 1963.

Божков, Хр. Вътрешни електрически инсталации. София, Техника, 1962.

България, СИВ и електрониката І част

България, СИВ и електрониката е заглавието на две последователни статии в Сандъците – Sandacite,

България, СИВ и електрониката І част

в които ще се опитаме да осветлим картината на износа и международното сътрудничество между България и останалите страни-членове на бившия Съвет за икономическа взаимопомощ (СИВ), по-точно през периода 1986-1990 г.

Както знаем, България е сред страните-основатели на СИВ, учреден на Московската конференция през 5-8 януари 1948 г. Малко по-късно България се специализира в производството (и съответно износа) на електронноизчислителна техника, която изнася за другите страни-членове, а в замяна получава друга приоритетно развита от тях продукция. Това презгранично сътрудничество се развива особено бурно през 70-те и 80-те години, когато България захранва с електронноизчислителна техника целия Източен блок, а произвежданите изделия са хардуерно и софтуерно съвместими с произвежданите и от други страни изделия (поради възприетата през 1969 г. т.н. Единна система от ЕИМ).

И така, нека дадем думата на статията от книгата ,,НРБ в отрасловата интеграция на страните-членки на СИВ“ с автор Атанас Ганев и издадена от БАН през 1990 г. Той ще ни даде интересна информация не само за това какво се е случило, но и за това какво е трябвало да се случи.

,,Електронизацията, автоматизацията и роботизацията са стратегически цели в развитието на икономиката на България и на останалите страни — членки на СИВ. Тази политика намери конкретен израз п в определените от Комитета за научно-технически прогрес приоритетни направления.

Електронизацията на народното стопанство е първото по значение при­оритетно направление, което е свързано пряко с всестранното развитие и прогреса на електронната и електротехническата промишленост в страни­те — членки на СИВ. От резултатите и успешното решаване на въпросите по разработването, внедряването и производството на необходимите за елек­тронизацията на народното стопанство технически средства до голяма сте­пен зависи и успешната реализация на останалите приоритетни направления. Без електронна, електронноизчислителна, интегрална и микропроцесорна техника, без създаването и развитието на съвременни електротехнически изделия и нови средства за предаване на информацията, е немислима ком­плексната автоматизация на производството, гъвкавите автоматизирани производствени системи и роботизацията. Немислимо е създаването и ефек­тивното функциониране на средствата за развитието на атомната енергети­ка, а така също и прецизният контрол и анализ на техниката и технологията по създаването на нови материали и технологии за тяхното производство и обработка, по създаването и развитието на биотехнологиите.

Междуотрасловият характер на продукцията, обекг на първото приори­тетно направление, обуславя комплексния подход при осъществяването на задачите за електронизацията на отделните народни стопанства. За маща­бите и практическата насоченост на работата, която осигурява всички сфери на производството и обществения живот с най-съвременни технически средства, свидетелствува фактът, че до 1990 г. предстои да се осъществят над 700 мероприятия, от които около 600 завършващи с внедряване в произ­водството.

От направлението електронизация вече са получени съществни резул­тати. Разработени, съгласувани и подписани са програми за сътрудниче­ство и генерални спогодби. Изясняват се потребностите и производствени­те възможности на отделните страни, които са в основата на подписаните договори за многостранна специализация и коопериране в разработването и производството на необходимите за народното стопанство технически сред­ства. Към края на 1986 г. от страните членки са подписани 32 спогодби и договора, 11 протокола за допълнение и уточняване на вече действуващи и около 40 контракта. В тях са залегнали най-важните задачи на сътруд­ничеството в областта на електронизацията, чиято цел е създазането на съвременни средства на електронноизчислителната техника (ЕИТ) и особено на минн- и микро-EИT, на персонални компютри с надеждно програмно осигуряване. Обект на спогодбите и договорите е и създаването на Единни системи — на средствата на комутационната техника (ЕС СКТ) – на средст­вата за цифрово предаване на информацията (ЕС СЦПИ) и на светопроводящите средства за предаваье на информацията (ЕС ССПИ), а така също и на фундамента, катализатора на НТП в електрониката, елементната ба­за — създаването на Единна унифицирана база на изделията на електрон­ната техника (ЕУБ ИЕТ). на микроелектронната, интегралната и процесор­ната техника.

България СИВ Balgariya SIV

Решаването от страните —членки на СИВ, на проблема за елементната база, за нейното перспективно развитие и равнище по същество е решава­не на изграждането на всички останали съвременни средства на електрон­ната и електронноизчислителната техника. В единната унифицирана номен­клатура на изделията са включени над хиляда вида, от които само инте­гралните схеми са 545[1] [2]. В рамките на спогодбата по микроелектроника са разработени и внедрени над 200 типа големи и свръх големи интегрални схеми, а до 1990 г. се предвижда създаването на още 160, включително 16- и 32-битови микропроцесорни, запомнящи устройства, програмируеми логически матрици и др.

През 1986—1990 г. значително нараства както обхватът на специали­зираната продукция, така и равнището на концентрацията на производ­ството спрямо нредшествуващата петилетка. Броят на произвежданите в страните членки интегрални микросхеми и полупроводникови прибори ще нарасне с 35% спрямо равнището на 1981—1985 г., като делът на изде­лията, произвеждани върху интеграционна основа — от 45% на 78%, а на изделията, от които са заинтересовани четири и повече страна— от 22 % на 55 %[3]. С реализацията на Генералната спогодба за Единната унифицирана база на изделията на електронната техника обемът на взаимните доставки между страните —членки на CИB, през 1986—1990 г. ще нарасне около два пъти в сравнение с предшествуващата петилетка, а на изделията на микро­електрониката почти три пъти.

От първостепенно значение за успешното осъществяване на направ­ление електронизация е ускоряването на разработката и на производство­то на съвременни електронноизчислителни машини (ЕИМ). Страните членки все още изостават от развитите капиталистически страни по изчис­лителна техника на 1000 жители и особено но битови и персонални микро­компютри. независимо че по технически възможности произвежданите ЕИМ Еече почти не отстъпват на съответните аналози. В СССР са разработени специални процесори, с помощта на които с мини-ЕИМ е постигната произ­водителността на суперкомпютър при много по-ниски, разходи. Моделирани са схеми с обем до 1 млн. елемента с производителност 1 млрд. операции в секунда. Това повишава 1,5 пъти аналогичния показател на американските машини[4]. Необходимо е да се постигне, от една страна, съществено нараст­ване обемите на произвежданата ЕИТ, а от друга, да се издигне нейното технико-икономическо равнище и качество.

Обемът на взаимните доставки само на средствата на изчислителната техника ще е около 25 млрд. рубли за 1986—1990 г. В хода на сътрудни­чеството са създадени и усвоени от промишлеността на страните — членки на СИВ, над 500 съвременни технически и програмни средства от Единната система на електронноизчислителните машини — големи ЕИМ, мини- и микро-ЕИМ, редица персонални ЕИМ. Разработва се и концепция за създа­ване на суперголеми ЕИМ, предназначени за решаване на особено сложни задачи в областта на науката, техниката и управлението. Определени са и сроковете за производството на електронноизчислителни машини и комплек­си с производителност до 1 млрд. операции в секунда, мини-ЕИМ с произ­водителност 5 млн. операции в секунда. Ще се разработват повече от 40 раз­лични вида персонални микрокомпютри, като някои от техните основни модули са в редовно производство от 1987 г.

Към разработването и произвдството на съвременните средства на ЕИТ и микроелектрониката страните —членки на СИВ, подхождат с ясното съзнание, че успехите и прогресът са свързани тясно с равнището на тех­нологичното оборудване, с качеството и чистотата на необходимите мате­риали. Това определя и политиката в тази насока — развитие и органично обединяване на елементите от системата технология — оборудване —мате­риали. В съвременните условия срокът на моралното остаряване на оборуд­ването в чистата електроника вече е 2—3 години, а цената на новите произ­водства непрекъснато расте. Една линия за производство на интегрални микросхеми в средата на 60-те години струва 0,5 млн. долара, в началото на 70-те години вече е около 2 млн. долара и дава продукция за 20 млн. до­лара, а в края на 70-те години стойността нараства на 10 млн. долара с обем на продукцията — 30 млн. долара. Аналогичен комплект оборудване сега струва 30 млн. долара с тенденция към 1990 г. да достигне 50 млн.8В също­то време стойността на логическите елементи за ЕИМ се снижава всяка годи­на с 25 %, а на паметта — до 40 %. Концентрирането на усилията на страни­те —членки на СИВ, в тази насока доведе до съществени резултати. От институтите и обединенията на страните в решаването на проблема за елек­тронизацията се създадоха 52 типа специално технологично оборудване за производство на изделия на изчислителна техника.

България СИВ Balgariya SIV

Нарастването на мащабите на производството на съвременна електрон­на и електронноизчислителна техника (ЕИТ) и на необходимото специално технологично оборудване и материали е само едната страна на проблема за електронизацията, с което ще се постигне по-висока степен на насищане на промишлеността, управлението, на отделните работни места и бита с необ­ходимата ЕИТ. Голямо внимание се обръща и на ефективното приложение и използуване на ЕИТ, без която е безпредметен количественият растеж.

Едно от най-важните направления е създаването на програмни средства за автоматизация на управлението на икономически и производствени систе­ми, на програмирането и обучението на кадри. В тази област на сътрудни­чеството вземат участие над 140 организации от България, УНР, ГДР, Куба, ПНР. СРР, СССР и ЧССР. За изтеклия период са изпълнени около 160 науч­но-методически работи и са разработени около 240 пакета приложни про­грами (ППП) с голям икономически ефект за съответните стопанства9.

В ЧССР например цената на един кг машиностроителна продукция с общо назна­чение е между 30 и 150 крони, докато цената на един кг на произвежданото в концерна „ТЕСЛА ЕЛСТРОЙ“ специално технологично оборудване достига в зависимост от типа до 1600—20 000 крони. .

Разработеният от България ППП за изчисляване на зъбни предавки е дал икономия от 100 хил.. рубли след приложението му в 5 съветски предприятия, а ППП „Сетор“, дело на съветски програмисти, се прилага в 20 български организации.

С развитието на мрежата на ЕИТ и с разширяването на сферите на при­ложението й, скоростта и обемът на обработката на социалната информация нараства много, но това влиза в противоречие с възможностите на съще­ствуващите сега средства за предаване на информацията. Системите, които са изградени преимуществено върху принципа на кабелните връзки, не могат да поемат обширния поток от информация и да осигурят необходимо­то съответствие между скоростта на обработката и нейното предаване. За­това в неразривна връзка с въпросите за количествения и качествения рас­теж на ЕИТ. Комплексната програма за научно-техническия прогрес поста­вя п задачата за всестранно развитие на съобщителната техника, на сред­ствата за предаване на информацията и за привеждането им в съответствие с новите изисквания.

Успешното развитие и равнището на микроелектрониката в страните — членки на СИВ, както и широкото навтизане на лазерната техника, опре­делиха основните насоки на сътрудничеството. Микроелектрониката позво­ли да се премине от аналогови към цифрови високоскоростни системи за обработка и предаване на информацията, а лазерната техника — към създа­ване на оптични системи и средства на съобщителната техника[5]. За осъще­ствяването в практиката на тези направления са подчинени и подписаните междуправителствени спогодби за многостранно сътрудничество между страните — членки на СИВ. Разработването и уточняването на подробни програми за създаване, изпитания и производство на различни системи, оборудване, модули и елементи върху основата на специализацията и коопе­рирането ма производството вече приключи. Ще бъде създадено необходимо­то комплексно оборудване от ЕС СЦПИ, което ще се експериментира на определен район от територията на СССР, като се предполага, че към 1990 г. средногодишният прираст на взаимните доставки между страните — член­ки на СИВ, ще достигне 25—30 процента[6]. С внедряването на единни състеми на средствата на комутационната техника и за цифрово предаване информаци­ята (в т. ч. по оптичен и космнчен път) ще бъде създадена и взаимосвързана автоматизирана комплексна система за свръзка на страните членки за предаване на всякаква информация, вкл. и пряк обмен на информация меж­ду електронноизчислителните машини и центровете в отделните страни.

България СИВ Balgariya SIV

От първостепенно значение както за разработването на КП НТП, така и за постигнатите в кратък срок след нейното приемане успехи в осъществя­ването на електронизацията е натрупаният организационен и практически опит. Ог значение са и равнището на НТП, и нарасналият икономически потенциал на отделните страни, а така също и разделението на труда между страните —членки на СИВ, върху основата на специализацията и коопе­рирането, координирано от Постоянната комисия по радиотехническа и електронна промишленост и Междуправителствената комисия по изчисли­телна техника.

От приемането на първите препоръки за специализация и коопериране на производството от Постоянната комисия по радиотехническа и електрон­на промишленост има повече от 20 години. Техният брой от 1965 г. до при­стъпването към оформянето им във вид на многостранни спогодби, подписвани от заинтересуваните страни, е 486. През този период България пое задълже­нието да организира самостоятелно или едновременно с други страни про­изводството на около 80 вида[7] радиоизмервателни прибори и устройства, електронни елементи — преди всичко гасивни (кондензатори, резистори, транзистори), радиолокационнн станции и др. Но приетите препоръки ус­тановиха, от една страна, фактически установените външнотърговски връз­ки между страните членки на СИВ, в т ч. и на България, а от друга, в преобладаващата си част засягаха продукцията на радиотехническата промиш­леност. В резултат на това до 1971 г. относителният дял на специализирана­та продукция не превиши 0,6 процента в износа и 1,2 % във вноса[8] [9]. В следващите години сътрудничеството и разделението на труда се развиваше върху осно­вата на 14 многостранни спогодби за специализация н коопериране на про­изводството. Важна крачка напред бе и разработването през 1977—1978 г на Дългосрочни програми за специализация и коопериране по съгласувана номенклатура, които впоследствие бяха обединени в Единна дългосрочна, програма за специализация и коопериране обхваща 2801 позиции, раз­четена до 1985 г., а по някои изделия и до 1990 г. Това доведе до качестве­ния прелом през 1981 —1985 г.. в който период специализацията и коопе­рирането на производството обхванаха как то продукцията на радиотехни­ческата, така н на електронната промишленост. В рамките на осъществе­ното разделение ка труда през този период България затвърди редица свои про­изводства и в същото време пое за специализация нови съвременни видове изделия: съвременни автоматични телефонни централи, уплътнителна апа­ратура, радио-и телевизионни прибори и устройства, електронни компо­ненти, полупроводникови прибори, интегрални микросхеми и други.

За периода 1986—1990 г. общият брой на специализираш те изделия ще нарасне със 17 % спрямо осмата петилетка, като в областта на радиотехническата промишленост с 8 %, а в електронната с 25 %. От спогодбите за специализация и коопериране отпаднаха повече от половината изделия пора­ди несъответствието им със съвременните изисквания за качество и технико-икономическо равнище[10]. На тяхно място са включени нови, конто ще определят НТП в близките години. Основното внимание сега е насочено към тези видове производства, които в най-голяма степен ще съдействат за осъществяването на електронизацията.

България СИВ Balgariya SIV

Необходимостта от разработване на единна концепция за съз щването, производството и приложението на ЕИТ в народните стопанства на страни­те—членки на СИВ, доведе до създаването на междуправителствена коми­сия по изчислителна техника през 1969 г. Дотогава в общността се произ­веждаха около 30 различни, несъвместими помежду си ЕИМ, което пречеше- за развитието на интеграционните процеси в тази област с всички отрица­телни последствия: невъзможност за организирането на ефективно разде­ление на труда, а оттук и за постигането на оптимални по размер произ­водствени мощности и предприятия в отделните страни, невъзможност за създаването и прилагането на единно програмно осигуряване, на приложни програми и не на последно място — невъзможност за ефективно протн – водействие срещу империалистическите държави които с цел да забавят развитието на ЕИТ в социалистическите страни, бяха я включили в списъка ка забранените за износ стратегически стоки.

За 10 години с общите усилия на страните —членки на СИВ, и с кон­кретното сътрудничество на повече от 100 национални научноизследовател­ски института, конструкторски бюра и завода, се създадоха 15 типа ЕИМ от Единната система „Ряд“, 4 типа мини-ЕИМ и около 300 други средства на изчислителната техника. Общият обем на производството нарасна повече от 6 пъти, а взаимните доставки 18 пъти, като достигнаха 9 млрд. рубли за 1976—1980 г. В рамките на Единната система България се насочи към про­изводство на едни от най-важните компоненти и устройства на ЕИМ: запом­нящи устройства на магнитни ленти и дискове, сменни дискови пакети, определени системи ЕИМ и централни процесори, системи за телеобработка на данни и други видове периферийни устройства. От изключително зна­чение за по-нататъшното развитие на ЕИТ както в България, така и в страните— членки на СИВ, като цяло, е и подписаната през 1982 г. Спогодба за мно­гостранна специализация и коопериране в разработването и производство­то на изделия на мнкроелектронната елементна база. специално техноло­гично оборудване и особено чисти материали за микроелектрониката. За кратък срок след нейното подписване се разработиха около 650 типа големи и свръхголемн интегрални схеми, в т. ч. 4,8 и 16-разредни микропроцесора, запомнящи устройства с капацитет 4, 16 и 64 Кбита, еднокристални 8 и 16-разредни микро-ЕИМ и други1.

Постигнатите успехи в осъществяването на голяма част от предвидени­те мероприятия по направлението електронизация е красноречиво дока­зателство -а единството във възгледите и целите на страните — членки на СИВ, за бъдещето на общността. Получените резултати щяха да са още по- големи, ако бяха преодолени някои от съществуващите недостатъци, свър­зани с цялостния механизъм на сътрудничеството и интеграцията и с уча­стието на отделните страни, ако по-открито и решително бяха поставени и решени върху съвместна основа редица от възникващите проблеми. Все още обект на разработените и подписани програми, а впоследствие и на спо­годбите и договорите за специализация и коопериране, е преимуществено раоработване на новата техника и технологии, параметрите и равнището на изделията, обемите на взаимните доставки. Недостатъчно внимание се об­ръща на наличието и мащабите на съществуващите производствени мощ­ности в специализиращите се страни. Въпросът е за развитието на произ­водствените мощности в страните членки като цяло, за съответствието им на необходимите мащаби на производството. Оттук възниква понякога несъответствието между потребностите от дадена продукция и мащабите на нейното производство.

България СИВ Balgariya SIV

Съществено влияние за несъответствието между потребностите и про­изводствените възможности има наследеният стремеж на страните да запа­зят определен периметър — поемане на задължение за специализация без да има необходимите производствени мощности за това. Понякога съще­ствува и обратната тенденция —дадена страна да се води каго единствен производител на определен вид продукция, а в същото време да не са заяве­ни и съответно оформени в договорите конкретни обеми за доставки в оста­налите страни. Слабост е и фактът, че последните се формират преимуществе­но след съгласуването и подписването на конкретните договори, а не пред­варително.

Независимо от приетите мерки за съответствие на подлежащата за спе­циализация продукция на съвременните изисквания по отношение на ка­чество и технико-икономическо равнище, все още в договорите се включват [11] и изделия, които не отговарят на условията. Причините тук са няколко. Понякога цените не стимулират както производителите, така и потребите­лите. В редица случаи самата промишленост не е подготвена за прилагането на конкретното ново изделие, което също така принуждава да се включват в номенклатурата по-стари изделия. За това съдействуват и недостатъците в стандартизацията в рамките на СИВ. При съществуващия подход да се разработват все още от момента на организирането на серийното производ­ство на продукцията и даже от началото на доставките те загубват основ­ното си поедназначение на стимулатор и утвърждават на практика достиг­натото равнище.

От разработваната предварително номенклатура на изделията незна­чителна част намира отражение в спогодбите и договорите за многостранна специализация и коопериране на производството. Както за 1981—1985 г., така и до 1990 г. е ярко изразена тенденцията на повишаване степента на концентрация на специализираното производство по многостранните спо­годби и договори. Тя е близка до желаната, т, е. в производството на кон­кретни изделия да се специализира преимуществено само една страна. Въ­преки че в спогодбите и договорите участвуват почти всички, средният брой на страните, конкретно заинтересовани от определени позиции спе­циализация за 1986—1990 г., не е повече от 4. Следователно избраната но­менклатура за специализация не отговаря на потребностите на всички стра­ни, след като показателят не отразява броя на участвуващите — за 1981 — 1985 г. той е 3,6 страни.

България СИВ Balgariya SIV

Независимо от провежданата единна политика в прилагането и ефектив­ното използуване на ЕИТ опитът и действуващата практика показват че в тази насока има големи и неизползувани още резерви. Взаимният обмен на програмни средства е незначителен в сравнение с общите и съществуващите в отделните страни потребности, а в стойностно изражение те еа незначите­лен дял от общия обем на стокообмена с ЕИТ и имат случаен, а не целеви, планов характер. Трудностите са свързани както с отсъствието на иконо­мически механизъм, който да стимулира обмена, така и с отсъствието на опит, а донякъде и с подценяването на въпроса. Не се осъществява и пла­нов обмен на информация за съществуващите в отделните страни програмни продукти, което води до изразходване на ненужни средства, труд и време от отделните страни за тяхното самостоятелно създаване. В рамките на СИВ е създаден централизиран фонд, но той все още е по-беден в сравнение със съществуващия в някои от страните — членки на СИВ. Много от водещите фирми в развитите капиталистически страни изразходват значително по­вече средства за програмно осигуряване, отколкото за ЕИТ. Съотношението между разходите за програмно осигуряване в тях и общите разходи по про­изводството и внедряването на ЕИТ е 9:1. Това е достатъчно красноречив показател за същността и значението на програмното осигуряване в съвкуп­ността от средствата за обработка на информацията посредством ЕИТ.

Въпросът за единното програмно осигуряване е пряко свързан и с проб­лема за съвместимостта на произвежданите средства на ЕИТ. Независимо от провежданата единна политика е необходимо да се постигне пълна, а не максимална съвместимост, както се предвижда. Тези два момента са един­ствената основа за създаването на действително нова инфраструктура на страните от общността, а именно на взаимосвързана автоматизирана инфор­мационна система, която да се опира върху принципите и техническите възможности на ЕИТ.

[1]  Икон. живот, № 91, 25 февр. 1987.

[2]  Зконсмическое сотрудничество стран — членов СЗВ, 1987, Л“ 1 , с. 42.

[3]  Септемврийско слово, (Михайловград), Ms 42, 6 дек. 1986.

! ИКО, 1986, № 11, с. 71.

[5]   Приложението на тази техника води и до огромна икономия на сурсвни и мате* риали. Металически кабел, по който се предава информация със скорост 560 Мбит в се­кунда тежи 4500 т, докато съответният светопроводящ — 100—150 т. Един кг стъкло в произвежданите в ЧССР светопроводящи кабели заменя около 16 т мед, при това масата на I кг стъклено влакно е около 8 гр. Вж. Зкономика зарубежной злектропромншлеп- ности. — Злектротехника, 1985, № 7 (19), с. 9.

[6]    Зкономическое сотрудничество стран — членов СЗВ, 1987, As 1, с. 46.

[7]    НРБ в социалистическата интеграция: структурна политика С. 1981, с 140,.

[8]    Б о р о х, Н В. и др. Производственное сотрудничество стран CSB М., 1982,

с. 42.

[9]    Пак там, с 43.

[10]  Зконочическое сотрудничество стран — членов СЕ)В, 1986, № 4, с. 60.

[11]  Зкономическое сотрудничество стран — членов С9В, 1984, № 11, с. 16.

 

Електронна вакуумна лампа – видове

Електронната вакуумна лампа е основна съставна част на старата електронна апаратура.

Електронна вакуумна лампа – видове

Тя се нарича още електровакуумна лампа или просто електронна лампа, които названия всъщност са по-правилни според нормите на български език. Електронните лампи биват различни според своето устройство, начин на работа, предназначение. В това по-популярно изложение сме избрали точно последния признак, за да създадем една статия от общи сведения за електронната вакуумна лампа.

  1. Приемно-усилвателни лампи. Те са предназначени главно за усилване на променливи напрежения и токове в радиоприемниците, нискочестотните и широколен­товите усилватели. Тук спадат:

а)        усилвателни лампи на напрежение, които се използуват за нискочестотни, високочестотни и свръхвисокочестотни усилватели.

б)        усилвателни лампи за мощност (изходящи, крайни лампи) за усилване мощността в изходящите стъпала на радиоприемниците и на нискочестотните усилватели.

в) детекторни лампи — за детектиране на високочестотни напрежения.

г)        честотопреобразувателни лампи — за преобразуване честотата на приеманите сигнали в суперхетеродинните радиоприемници. Ако лампата осъществява само смесването на входящите и спомагателните (осцилаторни) колебания, тя се нарича смесители а, а ако едновременно се използува и за генериране на спомагателните колебания — преобразувателна.

На снимката – приемно-усилвателната лампа РС88:

Електронна вакуумна лампа Elektronna vakuumna lampa

д)       индикатори за настройка тип „магическо око“, представляващи електроннолъчева лампа, ширината на светещата част на която зависи от потенциала на управляващия електрод.

  1. Токоизправителни лампи. Те са предназначени за преобразуване на промен­ливия ток в постоянен. Тук спадат вакуумните двуелектродни електронни лампи, на­речени кенотрони, газовите двуелектродни лампи — газотрони и газовите изправителни лампи с управляващ електрод (решетка) — тиратрони.
  2. Газови стабнлизаторни лампи (стабиловолт), предназначени за стабили­зиране на постоянни напрежения.
  3. Електроннолъчеви тръби (кинескопи). При тях фокусираният в тесен сноп електронен поток (лъч) пада върху луминисииращия екран и поражда в мястото на падането светла точка. Под въздействието на външно електростатично или магнитно поле електронният сноп се отклонява и по този начин върху екрана се получава светла линия, характе­ризираща изменението на отклоняващото поле. Тук спадат:

а)        осцилоскопни/осцилографни електроннолъчеви тръби, предна­значени за визуално наблюдение или записване на електрически процеси върху светло­чувствителна хартия.

Електронна вакуумна лампа Elektronna vakuumna lampa

б)        телевизионни електроннолъчеви тръби, наречени кине­скопи; те са предназначени за превръщане на усилените от телевизионния приемник видеоимпулси в образи.

в) радиолокационни електроннолъчеви тръби.

В зависимост от начина за фокусиране и отклонение на лъча, електроннолъче­вите тръби се делят на: електростатични и електромагнитни. Електростатичните електроннолъчеви тръби изискват по-прости устройства за фокусиране и отклонение на лъча и намират приложение главно при осцилоскопите, а електромагнитните електроннолъчеви тръби осигуряват по-добра фокусировка, по-голяма яркост на изо­бражението и имат почти два пъти по-малка дължина от електростатичните при еднакви размери на екрана.

Според времето на послесветене на екрана се различават: електроннолъчеви тръби с голямо послесветене, светещата точка на които има достатъчна за наблю­дение яркост в продължение на няколко минути (за наблюдение на еднократни про­цеси или импулси), и електроннолъчеви тръби с малко послесветене (осцилоскопни и телевизионни тръби).

Електронна вакуумна лампа Elektronna vakuumna lampa

Обикновено се използват тръби с цвят на светене на екрана както следва:

бял — телевизионни тръби;

зелен — осцилоскопни тръби;

син — осцилографни тръби за снимки;

оранжев — тръби с голямо послесветене.

  1. Фотоелектрични прибори. Тук спадат:

а)       фотоелементи с външен фотоефект, при които електронната емисия е пропорционална на осветеността на катода; използуват се във звуковото кино, фототелеграфията, промишлеността (фотореле).

б)       фотоелектронни умножители, при които отделеният ток от фотокатода се усилва многократно чрез вторична емисия.

в)        иконоскопи — за превръщане на оптическите образи в токови импулси при стари видове телевизионни камери.

Иконоскоп Ikonoskop

г)        фотоелементи с вътрешен фотоефект (фотосъпротивления), при които съпротивлението им се изменя в зависимост от осветеността на елемента.

  1. Генераторни и мощни усилвателни (модулаторни) лампи. Те се използуват за произвеждане и усилване на вч колебания в радиопредавателите, високочестотни генератори за про­мишлени цели и за нискочестотни усилватели и модулатори с голяма мощност.
  2. Усилвателни и генераторни лампи за дециметрови и сантиметрови вълни. Тук спадат:

а)       лампа с дискови електроди („маячкова“ или фарообразна лампа) за усилване и генериране на дециметрови вълни, представляваща триелектродна лампа с дискови електроди и минимални разстояния между тях.

б)       двукръгов клистрон — електронна вакуумна лампа със скоростна модулация; използва се за усилване (с коефициент на усилване от 2 до 20) и генериране (с по­лезна мощност няколко стотин вата) на сантиметрови вълни в обхвата от 0,7 до 11 см.

в)         отражателен клистрон, използван главно за осцилатор в ламповите суперхетеродинни приемници на сантиметрови вълни.

г)         лампа с бягаща вълна, използвана като усилвател на дециметрови вълни и генератор.

д)       магнетрон, който представлява електронна вакуумна лампа с магнитно управление на електронния поток и дава полезна мощност до 1000 kW на сантиметрови вълни в импулсен режим.

Електронна вакуумна лампа Elektronna vakuumna lampa

Един материал на Сандъците Sandacite.

Цокли за електронни лампи

Ето подробна информация за основните цокли за електронни лампи!

Цокли за електронни лампи

Според вида на ламповия балон и цокъла се разграничават следните по-важни типове електронни лампи.

Стъклени електронни лампи с щифтов цокъл. При някои лампи от този тип ламповият балон е външно метализиран и един от електродите е изведен върху балона във вид на качулка или страничен винт. Цокълът е бакелитов с 4, 5, 6 или 7 щифта, свързани с ламповите електроди и разположени различно. Тази конструкция на балона и цокъла се използва предимно в по-старите типове руски (съветски), европейски и американски радиолампи.

Цокли за електронни лампи Cokli za elektronni lampi
Цокли за електронни лампи Cokli za elektronni lampi

Стъклени електронни лампи с дълбок („европейски“) цокъл. Някои от лампите (ВЧ и НЧ усилватели на напрежение, преобразуватели и детектори) са външно метализирани, често с изведена управляваща решетка на качулката. Цокълът е баке­литов с 8 или 5 крачета. Такава конструкция на балона и цокъла имат европейските лампи серия 1-9.

Лампи дълбок цокъл Lampi dalbok cokal
Лампи дълбок цокъл Lampi dalbok cokal

Метални (стоманени) и стъклени електронни лампи с 8-полюсен (5 + 3) щифтов цокъл серия 11. Всички електроди на лампите от този тип са изведени върху цокъла. Изходящите пентоди и токоизправителните лампи имат стъклен балон, а останалите — метален. В тази група спадат европейските лампи серия 11-19.

Цокли за електронни лампи Cokli za elektronni lampi
Цокли за електронни лампи Cokli za elektronni lampi

Метални и стъклени електронни лампи с октален цо­къл. Електродите на лампата са изведени върху 8 крачета, раз­положени в окръжност. В средата на цокъла е поставено ци­линдрично бакелитово краче с надлъжен издатък („ключ“), което не позволява погрешно включване на лампата. При някои лампи един от електродите е изведен отгоре (качулка). Когато броят на изводите върху цокъла е по-малък от осем, излишните крачета често не се поставят. Такава конструкция на балона и цокъла имат по-голямата част от съветските и американските приемно-усилвателни и токоизправителни лампи, както и европейските лампи от серия 30-39.

Лампи октален цокъл Lampi oktalen cokal

Стъклени електронни лампи с локтален цокъл. При тези лампи долната част на стъкления балон представлява плоско дъно, през което са изведени електродите на лампата и отоплението. Металните крачета на цокъла (на брой 8) са запресовани в стък­леното дъно и са разположени в окръжност. Диаметърът на крачетата е 1,5 мм. Отвън върху долната част на стъклото е за­крепено чрез валцоване металическо дъно с отвори за крачетата и направляващ ключ в средата. Този цокъл се нарича още „клю­чов“ или „пресглас“. В тази група спадат европейските лампи от серия 20-29 и 70-79, както и някои съветски и американски лампи.

Лампи локтален цокъл Lampi loktalen cokal

 

Лампи локтален цокъл Lampi loktalen cokal
Лампи локтален цокъл Lampi loktalen cokal

Стъклени електронни лампи с иглен цокъл. При тях осемте крачета на цокъла, разположени в окръжност, са запресо­вани в стъкленото дъно на балона. За направляване на лампата при поставянето й в ламподържателя служи стъклена пъпка, намираща се отстрани в долната част на балона. Такъв цокъл е известен още под наименованието римлок и „пико 8“. Тук спадат европейските лампи от серия 40-49.

Лампи иглен цокъл Lampi iglen cokal
Лампи иглен цокъл Lampi iglen cokal
Лампи иглен цокъл Lampi iglen cokal

Миниатюрни стъклени електронни лампи. Подобно на лам­пите с локтален и иглен нокъл, крачетата на покъла са запресовани в стъкленото дъно на ламповия балон. Според броя на крачетата на цокъла различаваме: миниатюрен цокъл с 9 крачета, наречен още новален или „пико 9“ и миниатюрен цокъл със 7 крачета, наречен още „пико 7“. Тук спадат европейските лампи от серия 80-89 („пико 9“) и от серия 90-99 („пико 7“), руските „палчикови“ лампи (тип „палец“) и американските ми­ниатюрни лампи.

Стъклени миниатюрни лампи Stakleni miniatyurni lampi
Стъклени миниатюрни лампи Stakleni miniatyurni lampi

Свръхминиатюрни (безцоклени) електронни лампи. Тези лампи са с малки размери, нямат цокъл и електродите им се извеждат направо през стъклото за спойване в схемата както обикновените съпротивления и кондензатори. Тук спадат редица съветски, европейски и американски лампи от 50-те и 60-те години, пред­назначени за малогабаритни и ултракъсовълнови апаратури. По старата съветска терминология безцоклените лампи от този тип се наричаха „миниатюрни“.

Цокли за електронни лампи Cokli za elektronni lampi

Стъклени електронни лампи с цокъл „гном“. Тук спадат някои приемно-усилвателни лампи на производителя RFT от бившата ГДР, предназначени както за нормални цели, така и за УКВ. Тези лампи и.мат по 11 крачета, запресовани в основата на стъкления балон и наредени по окръжност, като едното от тях е поставено по-навътре и служи като водещо.

Лампи цокъл гном Lampi cokal gnom

Лампи тип „желъд“. Това са лампи с малки размери, предназначени за работа на УКВ. При тях електродите им са изведени през стъклото както по перифе­рията на околните стени, така и в двата края.

Един материал на Сандъците Sandacite

Exit mobile version